BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 21244847)

  • 1. A nonfitting method using a spatial sine window transform for inhomogeneous effective-diffusion measurements by FRAP.
    Orlova DY; Bártová E; Maltsev VP; Kozubek S; Chernyshev AV
    Biophys J; 2011 Jan; 100(2):507-16. PubMed ID: 21244847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular macromolecular mobility measured by fluorescence recovery after photobleaching with confocal laser scanning microscopes.
    Braga J; Desterro JM; Carmo-Fonseca M
    Mol Biol Cell; 2004 Oct; 15(10):4749-60. PubMed ID: 15292455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization and mobility of bacterial proteins by confocal microscopy and fluorescence recovery after photobleaching.
    Mullineaux CW
    Methods Mol Biol; 2007; 390():3-15. PubMed ID: 17951677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A generalization of theory for two-dimensional fluorescence recovery after photobleaching applicable to confocal laser scanning microscopes.
    Kang M; Day CA; Drake K; Kenworthy AK; DiBenedetto E
    Biophys J; 2009 Sep; 97(5):1501-11. PubMed ID: 19720039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Line FRAP with the confocal laser scanning microscope for diffusion measurements in small regions of 3-D samples.
    Braeckmans K; Remaut K; Vandenbroucke RE; Lucas B; De Smedt SC; Demeester J
    Biophys J; 2007 Mar; 92(6):2172-83. PubMed ID: 17208970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Confocal fluorescence recovery after photobleaching of green fluorescent protein in solution.
    Pucadyil TJ; Chattopadhyay A
    J Fluoresc; 2006 Jan; 16(1):87-94. PubMed ID: 16397826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rectangle FRAP for measuring diffusion with a laser scanning microscope.
    Xiong R; Deschout H; Demeester J; De Smedt SC; Braeckmans K
    Methods Mol Biol; 2014; 1076():433-41. PubMed ID: 24108637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion measurements inside biofilms by image-based fluorescence recovery after photobleaching (FRAP) analysis with a commercial confocal laser scanning microscope.
    Waharte F; Steenkeste K; Briandet R; Fontaine-Aupart MP
    Appl Environ Microbiol; 2010 Sep; 76(17):5860-9. PubMed ID: 20639359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photobleaching assays (FRAP & FLIP) to measure chromatin protein dynamics in living embryonic stem cells.
    Nissim-Rafinia M; Meshorer E
    J Vis Exp; 2011 Jun; (52):. PubMed ID: 21730953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new FRAP/FRAPa method for three-dimensional diffusion measurements based on multiphoton excitation microscopy.
    Mazza D; Braeckmans K; Cella F; Testa I; Vercauteren D; Demeester J; De Smedt SS; Diaspro A
    Biophys J; 2008 Oct; 95(7):3457-69. PubMed ID: 18621824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative interpretation of binding reactions of rapidly diffusing species using fluorescence recovery after photobleaching.
    Tsibidis GD
    J Microsc; 2009 Mar; 233(3):384-90. PubMed ID: 19250459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Parameters which affect the estimation of protein mobility by method FRAP in living cells on the example of protein fibrillarin].
    Barygina VV; Mironova AA; Zatsepina OV
    Tsitologiia; 2012; 54(1):17-24. PubMed ID: 22567896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of protein and lipid dynamics using confocal fluorescence recovery after photobleaching (FRAP).
    Day CA; Kraft LJ; Kang M; Kenworthy AK
    Curr Protoc Cytom; 2012 Oct; Chapter 2():Unit2.19. PubMed ID: 23042527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional fluorescence recovery after photobleaching with the confocal scanning laser microscope.
    Braeckmans K; Peeters L; Sanders NN; De Smedt SC; Demeester J
    Biophys J; 2003 Oct; 85(4):2240-52. PubMed ID: 14507689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantitative approach to analyze binding diffusion kinetics by confocal FRAP.
    Kang M; Day CA; DiBenedetto E; Kenworthy AK
    Biophys J; 2010 Nov; 99(9):2737-47. PubMed ID: 21044570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffusion measured by fluorescence recovery after photobleaching based on multiphoton excitation laser scanning microscopy.
    Schnell EA; Eikenes L; Tufto I; Erikson A; Juthajan A; Lindgren M; de Lange Davies C
    J Biomed Opt; 2008; 13(6):064037. PubMed ID: 19123683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective scheme of photolysis of GFP in live cell as revealed with confocal fluorescence microscopy.
    Glazachev YI; Orlova DY; Řezníčková P; Bártová E
    Phys Biol; 2018 Mar; 15(3):036008. PubMed ID: 29493532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring dynamics of nuclear proteins by photobleaching.
    Dundr M; Misteli T
    Curr Protoc Cell Biol; 2003 May; Chapter 13():Unit 13.5. PubMed ID: 18228420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analyzing intracellular binding and diffusion with continuous fluorescence photobleaching.
    Wachsmuth M; Weidemann T; Müller G; Hoffmann-Rohrer UW; Knoch TA; Waldeck W; Langowski J
    Biophys J; 2003 May; 84(5):3353-63. PubMed ID: 12719264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring the dynamics of chromatin proteins during differentiation.
    Harikumar A; Meshorer E
    Methods Mol Biol; 2013; 1042():173-80. PubMed ID: 23980007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.