These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 21244981)

  • 1. Ultrafast compound Doppler imaging: providing full blood flow characterization.
    Bercoff J; Montaldo G; Loupas T; Savery D; Mézière F; Fink M; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jan; 58(1):134-47. PubMed ID: 21244981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The leap from Doppler to ultrafast Doppler.
    Bercoff J
    Radiol Manage; 2012; 34(1):25-9; quiz 30-1. PubMed ID: 22413609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coded ultrasound for blood flow estimation using subband processing.
    Gran F; Udesen J; Nielsen MB; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2211-20. PubMed ID: 18986869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new method for blood velocity measurements using ultrasound FMCW signals.
    Kunita M; Sudo M; Inoue S; Akahane M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1064-76. PubMed ID: 20442017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphics processing unit-based high-frame-rate color Doppler ultrasound processing.
    Chang LW; Hsu KH; Li PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep; 56(9):1856-60. PubMed ID: 19811988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High PRF ultrafast sliding compound doppler imaging: fully qualitative and quantitative analysis of blood flow.
    Kang J; Jang WS; Yoo Y
    Phys Med Biol; 2018 Feb; 63(4):045004. PubMed ID: 29334078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography.
    Montaldo G; Tanter M; Bercoff J; Benech N; Fink M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):489-506. PubMed ID: 19411209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved transverse flow estimation using differential maximum Doppler frequency.
    Shen CC; Chou CH; Wang YC
    Ultrasound Med Biol; 2007 Mar; 33(3):420-9. PubMed ID: 17208352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method to expedite data acquisition for multiple spatial-temporal analyses of tissue perfusion by contrast-enhanced ultrasound.
    Hansen C; Hüttebräuker N; Wilkening W; Ermert H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):507-19. PubMed ID: 19411210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capon beamforming in medical ultrasound imaging with focused beams.
    Vignon F; Burcher MR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Mar; 55(3):619-28. PubMed ID: 18407851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal Clutter Filtering of Ultrafast Ultrasound Data Highly Increases Doppler and fUltrasound Sensitivity.
    Demené C; Deffieux T; Pernot M; Osmanski BF; Biran V; Gennisson JL; Sieu LA; Bergel A; Franqui S; Correas JM; Cohen I; Baud O; Tanter M
    IEEE Trans Med Imaging; 2015 Nov; 34(11):2271-85. PubMed ID: 25955583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro dual perfusion of human placental lobules as a flow phantom to investigate the relationship between fetoplacental flow and quantitative 3D power doppler angiography.
    Jones NW; Hutchinson ES; Brownbill P; Crocker IP; Eccles D; Bugg GJ; Raine-Fenning NJ
    Placenta; 2009 Feb; 30(2):130-5. PubMed ID: 19059643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Minimum variance beamforming combined with adaptive coherence weighting applied to medical ultrasound imaging.
    Asl BM; Mahloojifar A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep; 56(9):1923-31. PubMed ID: 19811995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency-locked pulse sequencer for high-frame-rate monochromatic tissue motion imaging.
    Azar RZ; Baghani A; Salcudean SE; Rohling R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Apr; 58(4):680-4. PubMed ID: 21507744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional blood velocity estimation with ultrasound: speckle tracking versus crossed-beam vector Doppler based on flow simulations in a carotid bifurcation model.
    Swillens A; Segers P; Torp H; Løvstakken L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):327-39. PubMed ID: 20178899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lateral blood flow velocity estimation based on ultrasound speckle size change with scan velocity.
    Xu T; Bashford GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2695-703. PubMed ID: 21156365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intraluminal ultrasound intensity distribution and backscattered Doppler power.
    Thompson RS; Bambi G; Steel R; Tortoli P
    Ultrasound Med Biol; 2004 Nov; 30(11):1485-94. PubMed ID: 15588959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Error analysis of ultrasonic tissue doppler velocity estimation techniques for quantification of velocity and strain.
    Bennett MJ; McLaughlin S; Anderson T; McDicken WN
    Ultrasound Med Biol; 2007 Jan; 33(1):74-81. PubMed ID: 17189049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood flow evaluation in high-frequency, 40 MHz imaging: a comparative study of four vector velocity estimation methods.
    Marion A; Aoudi W; Basarab A; Delachartre P; Vray D
    Ultrasonics; 2010 Jun; 50(7):683-90. PubMed ID: 20153008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sample volume shape for pulsed-flow velocity estimation using a linear array.
    Steinman AH; Lui EY; Johnston KW; Cobbold RS
    Ultrasound Med Biol; 2004 Oct; 30(10):1409-18. PubMed ID: 15582241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.