These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 21244995)

  • 21. A lateral-field-excited LiTaO3 high-frequency bulk acoustic wave sensor.
    McCann DF; McGann JM; Parks JM; Frankel DJ; da Cunha MP; Vetelino JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):779-87. PubMed ID: 19406706
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of piezoelectric bulk-acoustic-wave resonators as detectors in viscous conductive liquids.
    Josse F; Shana ZA; Radtke DE; Haworth DT
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(5):359-68. PubMed ID: 18285053
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions.
    Cooper MA; Singleton VT
    J Mol Recognit; 2007; 20(3):154-84. PubMed ID: 17582799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Positioning FBAR technology in the frequency and timing domain.
    Ruby R; Small M; Bi F; Lee D; Callaghan L; Parker R; Ortiz S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):334-45. PubMed ID: 22481766
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour- mode MEMS resonators.
    Zuo C; Van der Spiegel J; Piazza G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):82-7. PubMed ID: 20040430
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mass effects of quartz resonant sensors with different surface microstructures in liquids.
    Zhang C; Schranz S; Lucklum R; Hauptmann P
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1204-10. PubMed ID: 18244280
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analytical study of dual-mode thin film bulk acoustic resonators (FBARs) based on ZnO and AlN films with tilted c-axis orientation.
    Qin L; Chen Q; Cheng H; Wang QM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Aug; 57(8):1840-53. PubMed ID: 20679013
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-scan measurement of conductance of a quartz crystal microbalance array coupled with resonant markers for biosensing in liquid phase.
    Hsiao HY; Chen RL; Cheng TJ
    Rev Sci Instrum; 2009 Apr; 80(4):044301. PubMed ID: 19405677
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrode effects on general modes in high-overtone bulk acoustic resonators.
    Zhang H; Zhang SY; Zheng K
    Ultrasonics; 2006 Dec; 44 Suppl 1():e737-40. PubMed ID: 16793075
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Design of a Frame-Like ZnO FBAR Sensor for Achieving Uniform Mass Sensitivity Distributions.
    Zhao X; Zhao Z; Wang B; Qian Z; Ma T
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32340295
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An Investigation of Lateral Modes in FBAR Resonators.
    Jamneala T; Bradley P; Shirakawa A; Thalhammer R; Ruby R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 May; 63(5):778-789. PubMed ID: 26929039
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tuning the resonant frequency of resonators using molecular surface self-assembly approach.
    Liu W; Wang J; Yu Y; Chang Y; Tang N; Qu H; Wang Y; Pang W; Zhang H; Zhang D; Xu H; Duan X
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):950-8. PubMed ID: 25487349
    [TBL] [Abstract][Full Text] [Related]  

  • 33. AN ARRAY OF MONOLITHIC FBAR-CMOS OSCILLATORS FOR MASS-SENSING APPLICATIONS.
    Johnston ML; Kymissis I; Shepard KL
    Dig Tech Papers; 2009 Jun; 2009():1626-1629. PubMed ID: 21234274
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-frequency Lamb wave device composed of MEMS structure using LiNbO3 thin film and air gap.
    Kadota M; Ogami T; Yamamoto K; Tochishita H; Negoro Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Nov; 57(11):2564-71. PubMed ID: 21041143
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acoustic radiation-free surface phononic crystal resonator for in-liquid low-noise gravimetric detection.
    Gao F; Bermak A; Benchabane S; Robert L; Khelif A
    Microsyst Nanoeng; 2021; 7():8. PubMed ID: 33489307
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Femtogram mass resolution in a liquid environment using a low loss vacuum-gapped quartz crystal resonator.
    Kirkendall C; Kwon JW
    Lab Chip; 2011 Feb; 11(4):596-8. PubMed ID: 21103592
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A lateral field excited (yxl)88° LiTaO3 bulk acoustic wave sensor with interdigital electrodes.
    Ma T; Wang J; Du J; Yuan L; Qian Z; Zhang Z; Zhang C
    Ultrasonics; 2013 Mar; 53(3):648-51. PubMed ID: 23339996
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Parameter characterization of high-overtone bulk acoustic resonators by resonant spectrum method.
    Zhang H; Zhang SY; Zheng K
    Ultrasonics; 2005 Aug; 43(8):635-42. PubMed ID: 15982469
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lam e-mode miniaturized quartz temperature sensors.
    Kanie H; Kawaehima H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):341-5. PubMed ID: 18238548
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conceptual design of a high-Q, 3.4-GHz thin film quartz resonator.
    Patel MS; Yong YK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):912-20. PubMed ID: 19473909
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.