BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 21245034)

  • 1. Direct observation of cytosine flipping and covalent catalysis in a DNA methyltransferase.
    Gerasimaitė R; Merkienė E; Klimašauskas S
    Nucleic Acids Res; 2011 May; 39(9):3771-80. PubMed ID: 21245034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing a rate-limiting step by mutational perturbation of AdoMet binding in the HhaI methyltransferase.
    Merkiene E; Klimasauskas S
    Nucleic Acids Res; 2005; 33(1):307-15. PubMed ID: 15653631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of Arg165 towards base flipping, base stabilization and catalysis in M.HhaI.
    Shieh FK; Youngblood B; Reich NO
    J Mol Biol; 2006 Sep; 362(3):516-27. PubMed ID: 16926025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure, function, and mechanism of HhaI DNA methyltransferases.
    Sankpal UT; Rao DN
    Crit Rev Biochem Mol Biol; 2002; 37(3):167-97. PubMed ID: 12139442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic modes of the flipped-out cytosine during HhaI methyltransferase-DNA interactions in solution.
    Klimasauskas S; Szyperski T; Serva S; Wüthrich K
    EMBO J; 1998 Jan; 17(1):317-24. PubMed ID: 9427765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism of target base attack in DNA cytosine carbon 5 methylation.
    Svedruzić ZM; Reich NO
    Biochemistry; 2004 Sep; 43(36):11460-73. PubMed ID: 15350132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. M.HhaI binds tightly to substrates containing mismatches at the target base.
    Klimasauskas S; Roberts RJ
    Nucleic Acids Res; 1995 Apr; 23(8):1388-95. PubMed ID: 7753630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HhaI DNA methyltransferase uses the protruding Gln237 for active flipping of its target cytosine.
    Daujotyte D; Serva S; Vilkaitis G; Merkiene E; Venclovas C; Klimasauskas S
    Structure; 2004 Jun; 12(6):1047-55. PubMed ID: 15274924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanism of DNA cytosine-5 methylation. Kinetic and mutational dissection of Hhai methyltransferase.
    Vilkaitis G; Merkiene E; Serva S; Weinhold E; Klimasauskas S
    J Biol Chem; 2001 Jun; 276(24):20924-34. PubMed ID: 11283006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. S-adenosyl-L-methionine-dependent methyl transfer: observable precatalytic intermediates during DNA cytosine methylation.
    Youngblood B; Shieh FK; Buller F; Bullock T; Reich NO
    Biochemistry; 2007 Jul; 46(30):8766-75. PubMed ID: 17616174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 7-Deazaadenosylaziridine Cofactor for Sequence-Specific Labeling of DNA by the DNA Cytosine-C5 Methyltransferase M.HhaI.
    Kunkel F; Lurz R; Weinhold E
    Molecules; 2015 Nov; 20(11):20805-22. PubMed ID: 26610450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-facilitated base flipping in DNA by cytosine-5-methyltransferase.
    Huang N; Banavali NK; MacKerell AD
    Proc Natl Acad Sci U S A; 2003 Jan; 100(1):68-73. PubMed ID: 12506195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic C5-cytosine methylation of DNA: mechanistic implications of new crystal structures for HhaL methyltransferase-DNA-AdoHcy complexes.
    O'Gara M; Klimasauskas S; Roberts RJ; Cheng X
    J Mol Biol; 1996 Sep; 261(5):634-45. PubMed ID: 8800212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering the DNA cytosine-5 methyltransferase reaction for sequence-specific labeling of DNA.
    Lukinavicius G; Lapinaite A; Urbanaviciute G; Gerasimaite R; Klimasauskas S
    Nucleic Acids Res; 2012 Dec; 40(22):11594-602. PubMed ID: 23042683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determinants of precatalytic conformational transitions in the DNA cytosine methyltransferase M.HhaI.
    Matje DM; Coughlin DF; Connolly BA; Dahlquist FW; Reich NO
    Biochemistry; 2011 Mar; 50(9):1465-73. PubMed ID: 21229971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The coupling of tight DNA binding and base flipping: identification of a conserved structural motif in base flipping enzymes.
    Estabrook RA; Lipson R; Hopkins B; Reich N
    J Biol Chem; 2004 Jul; 279(30):31419-28. PubMed ID: 15143064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metadynamics simulation study on the conformational transformation of HhaI methyltransferase: an induced-fit base-flipping hypothesis.
    Jin L; Ye F; Zhao D; Chen S; Zhu K; Zheng M; Jiang RW; Jiang H; Luo C
    Biomed Res Int; 2014; 2014():304563. PubMed ID: 25045662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional analysis of BamHI DNA cytosine-N4 methyltransferase.
    Lindstrom WM; Malygin EG; Ovechkina LG; Zinoviev VV; Reich NO
    J Mol Biol; 2003 Jan; 325(4):711-20. PubMed ID: 12507474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzyme-promoted base flipping controls DNA methylation fidelity.
    Matje DM; Zhou H; Smith DA; Neely RK; Dryden DT; Jones AC; Dahlquist FW; Reich NO
    Biochemistry; 2013 Mar; 52(10):1677-85. PubMed ID: 23409782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Caught in the act: visualization of an intermediate in the DNA base-flipping pathway induced by HhaI methyltransferase.
    Horton JR; Ratner G; Banavali NK; Huang N; Choi Y; Maier MA; Marquez VE; MacKerell AD; Cheng X
    Nucleic Acids Res; 2004; 32(13):3877-86. PubMed ID: 15273274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.