BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

645 related articles for article (PubMed ID: 21245244)

  • 1. Phloem loading--not metaphysical, only complex: towards a unified model of phloem loading.
    Komor E; Orlich G; Weig A; Köckenberger W
    J Exp Bot; 1996 Aug; 47 Spec No():1155-64. PubMed ID: 21245244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sucrose transport into the phloem of Ricinus communis L. seedlings as measured by the analysis of sieve-tube sap.
    Kallarackal J; Orlich G; Schobert C; Komor E
    Planta; 1989 Mar; 177(3):327-35. PubMed ID: 24212425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Guard cell apoplastic photosynthate accumulation corresponds to a phloem-loading mechanism.
    Kang Y; Outlaw WH; Fiore GB; Riddle KA
    J Exp Bot; 2007; 58(15-16):4061-70. PubMed ID: 18182421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sucrose carrier RcSCR1 is involved in sucrose retrieval, but not in sucrose unloading in growing hypocotyls of Ricinus communis L.
    Eisenbarth DA; Weig AR
    Plant Biol (Stuttg); 2005 Jan; 7(1):98-103. PubMed ID: 15666209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for functional heterogeneity of sieve element-companion cell complexes in minor vein phloem of Alonsoa meridionalis.
    Voitsekhovskaja OV; Rudashevskaya EL; Demchenko KN; Pakhomova MV; Batashev DR; Gamalei YV; Lohaus G; Pawlowski K
    J Exp Bot; 2009; 60(6):1873-83. PubMed ID: 19321649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-sieve element transport of photoassimilates in sink regions.
    Patrick JW; Offler CE
    J Exp Bot; 1996 Aug; 47 Spec No():1165-77. PubMed ID: 21245245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The differential transport of amino acids into the phloem of Ricinus communis L. seedlings as shown by the analysis of sieve-tube sap.
    Schobert C; Komor E
    Planta; 1989 Mar; 177(3):342-9. PubMed ID: 24212427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport of hexoses by the phloem of Ricinus communis L. seedlings.
    Kallarackal J; Komor E
    Planta; 1989 Mar; 177(3):336-41. PubMed ID: 24212426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusion and bulk flow in phloem loading: a theoretical analysis of the polymer trap mechanism for sugar transport in plants.
    Dölger J; Rademaker H; Liesche J; Schulz A; Bohr T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042704. PubMed ID: 25375520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security.
    Braun DM; Wang L; Ruan YL
    J Exp Bot; 2014 Apr; 65(7):1713-35. PubMed ID: 24347463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructural indications for coexistence of symplastic and apoplastic phloem loading in Commelina benghalensis leaves : Differences in ontogenic development, spatial arrangement and symplastic connections of the two sieve tubes in the minor vein.
    van Bel AJ; van Kesteren WJ; Papenhuijzen C
    Planta; 1988 Nov; 176(2):159-72. PubMed ID: 24220769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization, localization, and seasonal changes of the sucrose transporter FeSUT1 in the phloem of Fraxinus excelsior.
    Öner-Sieben S; Rappl C; Sauer N; Stadler R; Lohaus G
    J Exp Bot; 2015 Aug; 66(15):4807-19. PubMed ID: 26022258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlations in concentrations, xylem and phloem flows, and partitioning of elements and ions in intact plants. A summary and statistical re-evaluation of modelling experiments in Ricinus communis.
    Peuke AD
    J Exp Bot; 2010 Mar; 61(3):635-55. PubMed ID: 20032109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sucrose transporter plays a role in phloem loading in CMV-infected melon plants that are defined as symplastic loaders.
    Gil L; Yaron I; Shalitin D; Sauer N; Turgeon R; Wolf S
    Plant J; 2011 Apr; 66(2):366-74. PubMed ID: 21241389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phloem loading in Ricinus cotyledons: sucrose pathways via the mesophyll and the apoplasm.
    Orlich G; Komor E
    Planta; 1992 Jul; 187(4):460-74. PubMed ID: 24178140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The plant axis as the command centre for (re)distribution of sucrose and amino acids.
    van Bel AJE
    J Plant Physiol; 2021 Oct; 265():153488. PubMed ID: 34416599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accumulation, selection and covariation of amino acids in sieve tube sap of tansy (Tanacetum vulgare) and castor bean (Ricinus communis): evidence for the function of a basic amino acid transporter and the absence of a γ-amino butyric acid transporter.
    Bauer SN; Nowak H; Keller F; Kallarackal J; Hajirezaei MR; Komor E
    Physiol Plant; 2014 Sep; 152(1):130-7. PubMed ID: 24446756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The phloem pathway: new issues and old debates.
    Dinant S; Lemoine R
    C R Biol; 2010 Apr; 333(4):307-19. PubMed ID: 20371105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sucrose transporters of higher plants.
    Kühn C; Grof CP
    Curr Opin Plant Biol; 2010 Jun; 13(3):288-98. PubMed ID: 20303321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sucrose transporters in two members of the Scrophulariaceae with different types of transport sugar.
    Knop C; Voitsekhovskaja O; Lohaus G
    Planta; 2001 May; 213(1):80-91. PubMed ID: 11523659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.