BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 21245391)

  • 1. Distortion of axonal cytoskeleton: an early sign of glaucomatous damage.
    Huang X; Kong W; Zhou Y; Gregori G
    Invest Ophthalmol Vis Sci; 2011 May; 52(6):2879-88. PubMed ID: 21245391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wavelength-dependent change of retinal nerve fiber layer reflectance in glaucomatous retinas.
    Huang XR; Zhou Y; Knighton RW; Kong W; Feuer WJ
    Invest Ophthalmol Vis Sci; 2012 Aug; 53(9):5869-76. PubMed ID: 22836775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered F-actin distribution in retinal nerve fiber layer of a rat model of glaucoma.
    Huang XR; Knighton RW
    Exp Eye Res; 2009 Jun; 88(6):1107-14. PubMed ID: 19450448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytoskeletal Alteration and Change of Retinal Nerve Fiber Layer Birefringence in Hypertensive Retina.
    Huang XR; Knighton RW; Spector YZ; Feuer WJ
    Curr Eye Res; 2017 Jun; 42(6):936-947. PubMed ID: 28094584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reflectance decreases before thickness changes in the retinal nerve fiber layer in glaucomatous retinas.
    Huang XR; Zhou Y; Kong W; Knighton RW
    Invest Ophthalmol Vis Sci; 2011 Aug; 52(9):6737-42. PubMed ID: 21730345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reflectance Spectrum and Birefringence of the Retinal Nerve Fiber Layer With Hypertensive Damage of Axonal Cytoskeleton.
    Huang XR; Knighton RW; Spector YZ; Qiao J; Kong W; Zhao Q
    Invest Ophthalmol Vis Sci; 2017 Apr; 58(4):2118-2129. PubMed ID: 28395028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increase in dephosphorylation of the heavy neurofilament subunit in the monkey chronic glaucoma model.
    Kashiwagi K; Ou B; Nakamura S; Tanaka Y; Suzuki M; Tsukahara S
    Invest Ophthalmol Vis Sci; 2003 Jan; 44(1):154-9. PubMed ID: 12506068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sectoral variations in the distribution of axonal cytoskeleton proteins in the human optic nerve head.
    Kang MH; Law-Davis S; Balaratnasingam C; Yu DY
    Exp Eye Res; 2014 Nov; 128():141-50. PubMed ID: 25304220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinal ganglion cell loss in a rat ocular hypertension model is sectorial and involves early optic nerve axon loss.
    Soto I; Pease ME; Son JL; Shi X; Quigley HA; Marsh-Armstrong N
    Invest Ophthalmol Vis Sci; 2011 Jan; 52(1):434-41. PubMed ID: 20811062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relating Retinal Ganglion Cell Function and Retinal Nerve Fiber Layer (RNFL) Retardance to Progressive Loss of RNFL Thickness and Optic Nerve Axons in Experimental Glaucoma.
    Fortune B; Cull G; Reynaud J; Wang L; Burgoyne CF
    Invest Ophthalmol Vis Sci; 2015 Jun; 56(6):3936-44. PubMed ID: 26087359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterogeneous distribution of axonal cytoskeleton proteins in the human optic nerve.
    Balaratnasingam C; Morgan WH; Johnstone V; Cringle SJ; Yu DY
    Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):2824-38. PubMed ID: 19168905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-dependent effects of elevated intraocular pressure on optic nerve head axonal transport and cytoskeleton proteins.
    Balaratnasingam C; Morgan WH; Bass L; Cringle SJ; Yu DY
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):986-99. PubMed ID: 18326722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the glaucomatous damage on retinal nerve fiber layer thickness measured by optical coherence tomography.
    Kanamori A; Nakamura M; Escano MF; Seya R; Maeda H; Negi A
    Am J Ophthalmol; 2003 Apr; 135(4):513-20. PubMed ID: 12654369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of axonal subtypes based on cytoskeletal components.
    Spector YZ; Zhao Q; Zhao X; Feuer WJ; Maravich PL; Huang XR
    Cell Health Cytoskelet; 2014; 6():1-10. PubMed ID: 28943757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of optic nerve head and retinal nerve fiber layer in early and advance glaucoma using frequency-domain optical coherence tomography.
    Li S; Wang X; Li S; Wu G; Wang N
    Graefes Arch Clin Exp Ophthalmol; 2010 Mar; 248(3):429-34. PubMed ID: 19937335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study of retinal nerve fiber layer thickness in normal eyes, ocular hypertensives, preperimetric glaucoma and glaucomatous subjects.
    Polo V; Larrosa JM; Ferreras A; de la Casa JM; Pablo LE; Honrubia FM
    Ann Ophthalmol (Skokie); 2009; 41(1):24-30. PubMed ID: 19413224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffuse glaucomatous structural and functional damage in the hemifield without significant pattern loss.
    Grewal DS; Sehi M; Greenfield DS
    Arch Ophthalmol; 2009 Nov; 127(11):1442-8. PubMed ID: 19901209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffuse retinal nerve fiber layer defects identification and quantification in thickness maps.
    Shin JW; Uhm KB; Seong M; Kim YJ
    Invest Ophthalmol Vis Sci; 2014 Apr; 55(5):3208-18. PubMed ID: 24744205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Astrocyte processes label for filamentous actin and reorient early within the optic nerve head in a rat glaucoma model.
    Tehrani S; Johnson EC; Cepurna WO; Morrison JC
    Invest Ophthalmol Vis Sci; 2014 Sep; 55(10):6945-52. PubMed ID: 25257054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-function relationship and diagnostic value of RNFL Area Index compared with circumpapillary RNFL thickness by spectral-domain OCT.
    Park HY; Park CK
    J Glaucoma; 2013 Feb; 22(2):88-97. PubMed ID: 23232911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.