These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 21245418)

  • 1. Rumen epithelial adaptation to high-grain diets involves the coordinated regulation of genes involved in cholesterol homeostasis.
    Steele MA; Vandervoort G; AlZahal O; Hook SE; Matthews JC; McBride BW
    Physiol Genomics; 2011 Mar; 43(6):308-16. PubMed ID: 21245418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rumen epithelial adaptation to ruminal acidosis in lactating cattle involves the coordinated expression of insulin-like growth factor-binding proteins and a cholesterolgenic enzyme.
    Steele MA; Dionissopoulos L; AlZahal O; Doelman J; McBride BW
    J Dairy Sci; 2012 Jan; 95(1):318-27. PubMed ID: 22192211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bovine rumen epithelium undergoes rapid structural adaptations during grain-induced subacute ruminal acidosis.
    Steele MA; Croom J; Kahler M; AlZahal O; Hook SE; Plaizier K; McBride BW
    Am J Physiol Regul Integr Comp Physiol; 2011 Jun; 300(6):R1515-23. PubMed ID: 21451145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short communication: grain-induced subacute ruminal acidosis is associated with the differential expression of insulin-like growth factor-binding proteins in rumen papillae of lactating dairy cattle.
    Steele MA; Alzahal O; Walpole ME; McBride BW
    J Dairy Sci; 2012 Oct; 95(10):6072-6. PubMed ID: 22921628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of induction of subacute ruminal acidosis on milk fat profile and rumen parameters.
    Colman E; Fokkink WB; Craninx M; Newbold JR; De Baets B; Fievez V
    J Dairy Sci; 2010 Oct; 93(10):4759-73. PubMed ID: 20855010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of repeated subacute ruminal acidosis challenges on the adaptation of the rumen bacterial community in Holstein bulls.
    Nagata R; Kim YH; Ohkubo A; Kushibiki S; Ichijo T; Sato S
    J Dairy Sci; 2018 May; 101(5):4424-4436. PubMed ID: 29477528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relationship between rumen acidosis resistance and expression of genes involved in regulation of intracellular pH and butyrate metabolism of ruminal epithelial cells in steers.
    Schlau N; Guan LL; Oba M
    J Dairy Sci; 2012 Oct; 95(10):5866-75. PubMed ID: 22863095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ruminal acidosis in beef cattle: the current microbiological and nutritional outlook.
    Nagaraja TG; Titgemeyer EC
    J Dairy Sci; 2007 Jun; 90 Suppl 1():E17-38. PubMed ID: 17517750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rumen lipopolysaccharide and inflammation during grain adaptation and subacute ruminal acidosis in steers.
    Gozho GN; Krause DO; Plaizier JC
    J Dairy Sci; 2006 Nov; 89(11):4404-13. PubMed ID: 17033028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epithelial response to high-grain diets involves alteration in nutrient transporters and Na+/K+-ATPase mRNA expression in rumen and colon of goats.
    Metzler-Zebeli BU; Hollmann M; Sabitzer S; Podstatzky-Lichtenstein L; Klein D; Zebeli Q
    J Anim Sci; 2013 Sep; 91(9):4256-66. PubMed ID: 23825322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ruminant Nutrition Symposium: Molecular adaptation of ruminal epithelia to highly fermentable diets.
    Penner GB; Steele MA; Aschenbach JR; McBride BW
    J Anim Sci; 2011 Apr; 89(4):1108-19. PubMed ID: 20971890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altering physically effective fiber intake through forage proportion and particle length: chewing and ruminal pH.
    Yang WZ; Beauchemin KA
    J Dairy Sci; 2007 Jun; 90(6):2826-38. PubMed ID: 17517723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of acarbose on milk yield and composition in early-lactation dairy cattle fed a ration to induce subacute ruminal acidosis.
    McLaughlin CL; Thompson A; Greenwood K; Sherington J; Bruce C
    J Dairy Sci; 2009 Sep; 92(9):4481-8. PubMed ID: 19700709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene expression in the arcuate nucleus of heifers is affected by controlled intake of high- and low-concentrate diets.
    Allen CC; Alves BR; Li X; Tedeschi LO; Zhou H; Paschal JC; Riggs PK; Braga-Neto UM; Keisler DH; Williams GL; Amstalden M
    J Anim Sci; 2012 Jul; 90(7):2222-32. PubMed ID: 22266992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feeding behavior and ruminal acidosis in beef cattle offered a total mixed ration or dietary components separately.
    Moya D; Mazzenga A; Holtshausen L; Cozzi G; González LA; Calsamiglia S; Gibb DG; McAllister TA; Beauchemin KA; Schwartzkopf-Genswein K
    J Anim Sci; 2011 Feb; 89(2):520-30. PubMed ID: 20952522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of a proteolytic feed enzyme on intake, digestion, ruminal fermentation, and milk production.
    Eun JS; Beauchemin KA
    J Dairy Sci; 2005 Jun; 88(6):2140-53. PubMed ID: 15905444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Technical note: Changes in rumen mucosa thickness measured by transabdominal ultrasound as a noninvasive method to diagnose subacute rumen acidosis in dairy cows.
    Neubauer V; Humer E; Kröger I; Meißl A; Reisinger N; Zebeli Q
    J Dairy Sci; 2018 Mar; 101(3):2650-2654. PubMed ID: 29274977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of an indwelling ruminal probe methodology and effect of grain level on diurnal pH variation in dairy cattle.
    Nocek JE; Allman JG; Kautz WP
    J Dairy Sci; 2002 Feb; 85(2):422-8. PubMed ID: 11913703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene function adjustment for carbohydrate metabolism and enrichment of rumen microbiota with antibiotic resistance genes during subacute rumen acidosis induced by a high-grain diet in lactating dairy cows.
    Mu YY; Qi WP; Zhang T; Zhang JY; Mao SY
    J Dairy Sci; 2021 Feb; 104(2):2087-2105. PubMed ID: 33358156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Starch source evaluation in calf starter: II. Ruminal parameters, rumen development, nutrient digestibilities, and nitrogen utilization in Holstein calves.
    Khan MA; Lee HJ; Lee WS; Kim HS; Kim SB; Park SB; Baek KS; Ha JK; Choi YJ
    J Dairy Sci; 2008 Mar; 91(3):1140-9. PubMed ID: 18292270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.