These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 21245497)

  • 1. Energetics and passive dynamics of the ankle in downhill walking.
    Holm JK; Contakos J; Lee SW; Jang J
    J Appl Biomech; 2010 Nov; 26(4):379-89. PubMed ID: 21245497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanics of walking and running up and downhill: A joint-level perspective to guide design of lower-limb exoskeletons.
    Nuckols RW; Takahashi KZ; Farris DJ; Mizrachi S; Riemer R; Sawicki GS
    PLoS One; 2020; 15(8):e0231996. PubMed ID: 32857774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Passive prosthetic ankle-foot mechanism for automatic adaptation to sloped surfaces.
    Nickel E; Sensinger J; Hansen A
    J Rehabil Res Dev; 2014; 51(5):803-14. PubMed ID: 25333672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mechanical model of the human ankle in the transverse plane during straight walking: implications for prosthetic design.
    Glaister BC; Schoen JA; Orendurff MS; Klute GK
    J Biomech Eng; 2009 Mar; 131(3):034501. PubMed ID: 19154072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does it pay to have a damper in a powered ankle prosthesis? A power-energy perspective.
    Eslamy M; Grimmer M; Rinderknecht S; Seyfarth A
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650362. PubMed ID: 24187181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lower limb joint work and joint work contribution during downhill and uphill walking at different inclinations.
    Alexander N; Strutzenberger G; Ameshofer LM; Schwameder H
    J Biomech; 2017 Aug; 61():75-80. PubMed ID: 28734544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redistribution of intra- and inter-limb support moments during downhill walking on different slopes.
    Hong SW; Wang TM; Lu TW; Li JD; Leu TH; Ho WP
    J Biomech; 2014 Feb; 47(3):709-15. PubMed ID: 24398165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of push-off timing in a robotic ankle-foot prosthesis on the energetics and mechanics of walking.
    Malcolm P; Quesada RE; Caputo JM; Collins SH
    J Neuroeng Rehabil; 2015 Feb; 12():21. PubMed ID: 25889201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical effects of augmented ankle power output during human walking.
    Fickey SN; Browne MG; Franz JR
    J Exp Biol; 2018 Nov; 221(Pt 22):. PubMed ID: 30266784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinematics of lower limbs during walking are emulated by springy walking model with a compliantly connected, off-centered curvy foot.
    Lim H; Park S
    J Biomech; 2018 Apr; 71():119-126. PubMed ID: 29456169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proportional Joint-Moment Control for Instantaneously Adaptive Ankle Exoskeleton Assistance.
    Gasparri GM; Luque J; Lerner ZF
    IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):751-759. PubMed ID: 30908231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons.
    Jackson RW; Collins SH
    J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking.
    Neptune RR; Kautz SA; Zajac FE
    J Biomech; 2001 Nov; 34(11):1387-98. PubMed ID: 11672713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leg joint function during walking acceleration and deceleration.
    Qiao M; Jindrich DL
    J Biomech; 2016 Jan; 49(1):66-72. PubMed ID: 26686397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of walking speed on lower extremity joint loading in graded ramp walking.
    Schwameder H; Lindenhofer E; Müller E
    Sports Biomech; 2005 Jul; 4(2):227-43. PubMed ID: 16138659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of ground reaction forces and ankle moment with multiple, low-cost sensors.
    Jacobs DA; Ferris DP
    J Neuroeng Rehabil; 2015 Oct; 12():90. PubMed ID: 26467753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinematic and kinetic comparison of downhill and level walking.
    Kuster M; Sakurai S; Wood GA
    Clin Biomech (Bristol, Avon); 1995 Mar; 10(2):79-84. PubMed ID: 11415535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical energy profiles of the combined ankle-foot system in normal gait: insights for prosthetic designs.
    Takahashi KZ; Stanhope SJ
    Gait Posture; 2013 Sep; 38(4):818-23. PubMed ID: 23628408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical Impedance of the Ankle During the Terminal Stance Phase of Walking.
    Shorter AL; Rouse EJ
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):135-143. PubMed ID: 28976318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gait on slopes: Differences in temporo-spatial, kinematic and kinetic gait parameters between walking on a ramp and on a treadmill.
    Strutzenberger G; Leutgeb L; Claußen L; Schwameder H
    Gait Posture; 2022 Jan; 91():73-78. PubMed ID: 34653877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.