BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

460 related articles for article (PubMed ID: 21245522)

  • 1. Optimized fabrication of Ca-P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineering.
    Duan B; Cheung WL; Wang M
    Biofabrication; 2011 Mar; 3(1):015001. PubMed ID: 21245522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering.
    Duan B; Wang M; Zhou WY; Cheung WL; Li ZY; Lu WW
    Acta Biomater; 2010 Dec; 6(12):4495-505. PubMed ID: 20601244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Customized Ca-P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor.
    Duan B; Wang M
    J R Soc Interface; 2010 Oct; 7 Suppl 5(Suppl 5):S615-29. PubMed ID: 20504805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation.
    Sultana N; Wang M
    Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PHBV microspheres--PLGA matrix composite scaffold for bone tissue engineering.
    Huang W; Shi X; Ren L; Du C; Wang Y
    Biomaterials; 2010 May; 31(15):4278-85. PubMed ID: 20199806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis, microstructure, and mechanical behaviour of a unique porous PHBV scaffold manufactured using selective laser sintering.
    Diermann SH; Lu M; Zhao Y; Vandi LJ; Dargusch M; Huang H
    J Mech Behav Biomed Mater; 2018 Aug; 84():151-160. PubMed ID: 29778988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective laser sintering of porous tissue engineering scaffolds from poly(L: -lactide)/carbonated hydroxyapatite nanocomposite microspheres.
    Zhou WY; Lee SH; Wang M; Cheung WL; Ip WY
    J Mater Sci Mater Med; 2008 Jul; 19(7):2535-40. PubMed ID: 17619975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro degradation of a unique porous PHBV scaffold manufactured using selective laser sintering.
    Diermann SH; Lu M; Edwards G; Dargusch M; Huang H
    J Biomed Mater Res A; 2019 Jan; 107(1):154-162. PubMed ID: 30358091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PHBV microspheres as neural tissue engineering scaffold support neuronal cell growth and axon-dendrite polarization.
    Chen W; Tong YW
    Acta Biomater; 2012 Feb; 8(2):540-8. PubMed ID: 22005329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospinning and evaluation of PHBV-based tissue engineering scaffolds with different fibre diameters, surface topography and compositions.
    Tong HW; Wang M; Lu WW
    J Biomater Sci Polym Ed; 2012; 23(6):779-806. PubMed ID: 21418747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering.
    Kolan KC; Leu MC; Hilmas GE; Brown RF; Velez M
    Biofabrication; 2011 Jun; 3(2):025004. PubMed ID: 21636879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering.
    Yeong WY; Sudarmadji N; Yu HY; Chua CK; Leong KF; Venkatraman SS; Boey YC; Tan LP
    Acta Biomater; 2010 Jun; 6(6):2028-34. PubMed ID: 20026436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering.
    Williams JM; Adewunmi A; Schek RM; Flanagan CL; Krebsbach PH; Feinberg SE; Hollister SJ; Das S
    Biomaterials; 2005 Aug; 26(23):4817-27. PubMed ID: 15763261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and fabrication of bone tissue scaffolds based on PCL/PHBV containing hydroxyapatite nanoparticles: dual-leaching technique.
    Nahanmoghadam A; Asemani M; Goodarzi V; Ebrahimi-Barough S
    J Biomed Mater Res A; 2021 Jun; 109(6):981-993. PubMed ID: 33448637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective laser sintering of biocompatible polymers for applications in tissue engineering.
    Tan KH; Chua CK; Leong KF; Cheah CM; Gui WS; Tan WS; Wiria FE
    Biomed Mater Eng; 2005; 15(1-2):113-24. PubMed ID: 15623935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of porous polyvinyl alcohol scaffold for bone tissue engineering via selective laser sintering.
    Shuai C; Mao Z; Lu H; Nie Y; Hu H; Peng S
    Biofabrication; 2013 Mar; 5(1):015014. PubMed ID: 23385303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering.
    Raeisdasteh Hokmabad V; Davaran S; Ramazani A; Salehi R
    J Biomater Sci Polym Ed; 2017 Nov; 28(16):1797-1825. PubMed ID: 28707508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Akermanite reinforced PHBV scaffolds manufactured using selective laser sintering.
    Diermann SH; Lu M; Dargusch M; Grøndahl L; Huang H
    J Biomed Mater Res B Appl Biomater; 2019 Nov; 107(8):2596-2610. PubMed ID: 30903652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryogenic 3D printing for producing hierarchical porous and rhBMP-2-loaded Ca-P/PLLA nanocomposite scaffolds for bone tissue engineering.
    Wang C; Zhao Q; Wang M
    Biofabrication; 2017 Jun; 9(2):025031. PubMed ID: 28589918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modified PHBV scaffolds by in situ UV polymerization: structural characteristic, mechanical properties and bone mesenchymal stem cell compatibility.
    Ke Y; Wang YJ; Ren L; Zhao QC; Huang W
    Acta Biomater; 2010 Apr; 6(4):1329-36. PubMed ID: 19853067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.