These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 2124584)

  • 1. Stiffened erythrocytes augment the pulmonary hemodynamic response to hypoxia.
    Doyle MP; Walker BR
    J Appl Physiol (1985); 1990 Oct; 69(4):1270-5. PubMed ID: 2124584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced erythrocyte deformability alters pulmonary hemodynamics.
    Doyle MP; Galey WR; Walker BR
    J Appl Physiol (1985); 1989 Dec; 67(6):2593-9. PubMed ID: 2606867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of erythrocyte deformability in the acute hypoxic pressor response in the pulmonary vasculature.
    Hakim TS; Macek AS
    Respir Physiol; 1988 Apr; 72(1):95-107. PubMed ID: 3363239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of hypoxia on erythrocyte deformability in different species.
    Hakim TS; Macek AS
    Biorheology; 1988; 25(6):857-68. PubMed ID: 3151444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of RBC shape and deformability on pulmonary O2 diffusing capacity and resistance to flow in rabbit lungs.
    Betticher DC; Reinhart WH; Geiser J
    J Appl Physiol (1985); 1995 Mar; 78(3):778-83. PubMed ID: 7775318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Echinocytic transformation and aggregation of red cells in uremic patients.
    Agroyannis B; Dalamangas A; Tzanatos H; Fourtounas C; Kopelias I; Koutsikos D
    J Appl Physiol (1985); 1996 Feb; 80(2):711-2. PubMed ID: 8929620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capillary recruitment in response to tissue hypoxia and its dependence on red blood cell deformability.
    Parthasarathi K; Lipowsky HH
    Am J Physiol; 1999 Dec; 277(6):H2145-57. PubMed ID: 10600832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of erythrocyte deformability on in vivo red cell transit time and hematocrit and their correlation with in vitro filterability.
    Lipowsky HH; Cram LE; Justice W; Eppihimer MJ
    Microvasc Res; 1993 Jul; 46(1):43-64. PubMed ID: 8412852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pulmonary entrapment of sickle cells: the role of regional alveolar hypoxia.
    Aldrich TK; Dhuper SK; Patwa NS; Makolo E; Suzuka SM; Najeebi SA; Santhanakrishnan S; Nagel RL; Fabry ME
    J Appl Physiol (1985); 1996 Feb; 80(2):531-9. PubMed ID: 8929595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microvascular hemodynamics in the sickle red blood cell perfused isolated rat lung.
    Haynes J; Taylor AE; Dixon D; Voelkel N
    Am J Physiol; 1993 Feb; 264(2 Pt 2):H484-9. PubMed ID: 8447460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Erythrocyte deformability and lung segmental vascular resistance: effect of hematocrit.
    Raj JU; Anderson J
    J Appl Physiol (1985); 1991 Mar; 70(3):1386-92. PubMed ID: 2033008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of erythrocyte flexibility on microvascular perfusion and oxygenation during acute anemia.
    Cabrales P
    Am J Physiol Heart Circ Physiol; 2007 Aug; 293(2):H1206-15. PubMed ID: 17449555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relationship between red blood cell deformability metrics and perfusion of an artificial microvascular network.
    Sosa JM; Nielsen ND; Vignes SM; Chen TG; Shevkoplyas SS
    Clin Hemorheol Microcirc; 2014; 57(3):275-89. PubMed ID: 23603326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide inhibits hypoxia-induced impairment of human RBC deformability through reducing the cross-linking of membrane protein band 3.
    Zhao Y; Wang X; Wang R; Chen D; Noviana M; Zhu H
    J Cell Biochem; 2019 Jan; 120(1):305-320. PubMed ID: 30218451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental evaluation of mechanical and electrical properties of RBC suspensions in Dextran and PEG under flow II. Role of RBC deformability and morphology.
    Antonova N; Riha P; Ivanov I; Gluhcheva Y
    Clin Hemorheol Microcirc; 2011; 49(1-4):441-50. PubMed ID: 22214715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of plasma-derived extracellular vesicles on erythrocyte deformability in polymicrobial sepsis.
    Subramani K; Raju SP; Chu X; Warren M; Pandya CD; Hoda N; Fulzele S; Raju R
    Int Immunopharmacol; 2018 Dec; 65():244-247. PubMed ID: 30340103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a flow standard to enable highly reproducible measurements of deformability of stored red blood cells in a microfluidic device.
    Robidoux J; Laforce-Lavoie A; Charette SJ; Shevkoplyas SS; Yoshida T; Lewin A; Brouard D
    Transfusion; 2020 May; 60(5):1032-1041. PubMed ID: 32237236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical investigation on red blood cell dynamics in microflow: Effect of cell deformability.
    Ju M; Leo HL; Kim S
    Clin Hemorheol Microcirc; 2017; 65(2):105-117. PubMed ID: 27447420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of reduced red cell deformability on regional blood flow.
    Simchon S; Jan KM; Chien S
    Am J Physiol; 1987 Oct; 253(4 Pt 2):H898-903. PubMed ID: 3661739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of erythrocyte deformability and its correlation to cellular ATP release using microbore tubing with diameters that approximate resistance vessels in vivo.
    Fischer DJ; Torrence NJ; Sprung RJ; Spence DM
    Analyst; 2003 Sep; 128(9):1163-8. PubMed ID: 14529024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.