These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 21245840)

  • 1. Impact of the Mertz Glacier Tongue calving on dense water formation and export.
    Kusahara K; Hasumi H; Williams GD
    Nat Commun; 2011 Jan; 2():159. PubMed ID: 21245840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential regime shift in decreased sea ice production after the Mertz Glacier calving.
    Tamura T; Williams GD; Fraser AD; Ohshima KI
    Nat Commun; 2012 May; 3():826. PubMed ID: 22569370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerated freshening of Antarctic Bottom Water over the last decade in the Southern Indian Ocean.
    Menezes VV; Macdonald AM; Schatzman C
    Sci Adv; 2017 Jan; 3(1):e1601426. PubMed ID: 28138548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glacial ice and atmospheric forcing on the Mertz Glacier Polynya over the past 250 years.
    Campagne P; Crosta X; Houssais MN; Swingedouw D; Schmidt S; Martin A; Devred E; Capo S; Marieu V; Closset I; Massé G
    Nat Commun; 2015 Mar; 6():6642. PubMed ID: 25803779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic Bottom Water.
    Silvano A; Rintoul SR; Peña-Molino B; Hobbs WR; van Wijk E; Aoki S; Tamura T; Williams GD
    Sci Adv; 2018 Apr; 4(4):eaap9467. PubMed ID: 29675467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dominant frazil ice production in the Cape Darnley polynya leading to Antarctic Bottom Water formation.
    Ohshima KI; Fukamachi Y; Ito M; Nakata K; Simizu D; Ono K; Nomura D; Hashida G; Tamura T
    Sci Adv; 2022 Oct; 8(42):eadc9174. PubMed ID: 36260668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abyssal ocean overturning slowdown and warming driven by Antarctic meltwater.
    Li Q; England MH; Hogg AM; Rintoul SR; Morrison AK
    Nature; 2023 Mar; 615(7954):841-847. PubMed ID: 36991191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Synoptic View of the Ventilation and Circulation of Antarctic Bottom Water from Chlorofluorocarbons and Natural Tracers.
    Purkey SG; Smethie WM; Gebbie G; Gordon AL; Sonnerup RE; Warner MJ; Bullister JL
    Ann Rev Mar Sci; 2018 Jan; 10():503-527. PubMed ID: 28877009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intense ocean freshening from melting glacier around the Antarctica during early twenty-first century.
    Pan XL; Li BF; Watanabe YW
    Sci Rep; 2022 Jan; 12(1):383. PubMed ID: 35013425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in ice dynamics and mass balance of the Antarctic ice sheet.
    Rignot E
    Philos Trans A Math Phys Eng Sci; 2006 Jul; 364(1844):1637-55. PubMed ID: 16782604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. No detectable Weddell Sea Antarctic Bottom Water export during the Last and Penultimate Glacial Maximum.
    Huang H; Gutjahr M; Eisenhauer A; Kuhn G
    Nat Commun; 2020 Jan; 11(1):424. PubMed ID: 31969564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rebound of shelf water salinity in the Ross Sea.
    Castagno P; Capozzi V; DiTullio GR; Falco P; Fusco G; Rintoul SR; Spezie G; Budillon G
    Nat Commun; 2019 Nov; 10(1):5441. PubMed ID: 31784513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pan-ice-sheet glacier terminus change in East Antarctica reveals sensitivity of Wilkes Land to sea-ice changes.
    Miles BW; Stokes CR; Jamieson SS
    Sci Adv; 2016 May; 2(5):e1501350. PubMed ID: 27386519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf.
    Garabato AC; Forryan A; Dutrieux P; Brannigan L; Biddle LC; Heywood KJ; Jenkins A; Firing YL; Kimura S
    Nature; 2017 Feb; 542(7640):219-222. PubMed ID: 28135723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong ice-ocean interaction beneath Shirase Glacier Tongue in East Antarctica.
    Hirano D; Tamura T; Kusahara K; Ohshima KI; Nicholls KW; Ushio S; Simizu D; Ono K; Fujii M; Nogi Y; Aoki S
    Nat Commun; 2020 Aug; 11(1):4221. PubMed ID: 32839464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Internal tsunamigenesis and ocean mixing driven by glacier calving in Antarctica.
    Meredith MP; Inall ME; Brearley JA; Ehmen T; Sheen K; Munday D; Cook A; Retallick K; Van Landeghem K; Gerrish L; Annett A; Carvalho F; Jones R; Naveira Garabato AC; Bull CYS; Wallis BJ; Hogg AE; Scourse J
    Sci Adv; 2022 Nov; 8(47):eadd0720. PubMed ID: 36417533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Warm Circumpolar Deep Water transport toward Antarctica driven by local dense water export in canyons.
    Morrison AK; Hogg AM; England MH; Spence P
    Sci Adv; 2020 May; 6(18):eaav2516. PubMed ID: 32494658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay.
    Williams GD; Herraiz-Borreguero L; Roquet F; Tamura T; Ohshima KI; Fukamachi Y; Fraser AD; Gao L; Chen H; McMahon CR; Harcourt R; Hindell M
    Nat Commun; 2016 Aug; 7():12577. PubMed ID: 27552365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The 79°N Glacier cavity modulates subglacial iron export to the NE Greenland Shelf.
    Krisch S; Hopwood MJ; Schaffer J; Al-Hashem A; Höfer J; Rutgers van der Loeff MM; Conway TM; Summers BA; Lodeiro P; Ardiningsih I; Steffens T; Achterberg EP
    Nat Commun; 2021 May; 12(1):3030. PubMed ID: 34031401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ventilation of the abyss in the Atlantic sector of the Southern Ocean.
    Akhoudas CH; Sallée JB; Haumann FA; Meredith MP; Garabato AN; Reverdin G; Jullion L; Aloisi G; Benetti M; Leng MJ; Arrowsmith C
    Sci Rep; 2021 Mar; 11(1):6760. PubMed ID: 33762612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.