These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 21245914)

  • 1. Repulsive forces between looping chromosomes induce entropy-driven segregation.
    Bohn M; Heermann DW
    PLoS One; 2011 Jan; 6(1):e14428. PubMed ID: 21245914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion-driven looping provides a consistent framework for chromatin organization.
    Bohn M; Heermann DW
    PLoS One; 2010 Aug; 5(8):e12218. PubMed ID: 20811620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Packing of the polynucleosome chain in interphase chromosomes: evidence for a contribution of crowding and entropic forces.
    Hancock R
    Semin Cell Dev Biol; 2007 Oct; 18(5):668-75. PubMed ID: 17904880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Entropic organization of interphase chromosomes.
    Cook PR; Marenduzzo D
    J Cell Biol; 2009 Sep; 186(6):825-34. PubMed ID: 19752020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topological interactions between ring polymers: Implications for chromatin loops.
    Bohn M; Heermann DW
    J Chem Phys; 2010 Jan; 132(4):044904. PubMed ID: 20113063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High resolution analysis of interphase chromosome domains.
    Visser AE; Jaunin F; Fakan S; Aten JA
    J Cell Sci; 2000 Jul; 113 ( Pt 14)():2585-93. PubMed ID: 10862716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Structure of chromatin. 2: levels of organization of DNA in the nucleus. Highly organized structures].
    Santisteban MS
    Pathol Biol (Paris); 1995 May; 43(5):420-47. PubMed ID: 8532381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical mechanics of chromosomes: in vivo and in silico approaches reveal high-level organization and structure arise exclusively through mechanical feedback between loop extruders and chromatin substrate properties.
    He Y; Lawrimore J; Cook D; Van Gorder EE; De Larimat SC; Adalsteinsson D; Forest MG; Bloom K
    Nucleic Acids Res; 2020 Nov; 48(20):11284-11303. PubMed ID: 33080019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A polymer model for the structural organization of chromatin loops and minibands in interphase chromosomes.
    Ostashevsky J
    Mol Biol Cell; 1998 Nov; 9(11):3031-40. PubMed ID: 9802894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcription-induced supercoiling as the driving force of chromatin loop extrusion during formation of TADs in interphase chromosomes.
    Racko D; Benedetti F; Dorier J; Stasiak A
    Nucleic Acids Res; 2018 Feb; 46(4):1648-1660. PubMed ID: 29140466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and dynamics of interphase chromosomes.
    Rosa A; Everaers R
    PLoS Comput Biol; 2008 Aug; 4(8):e1000153. PubMed ID: 18725929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatially confined folding of chromatin in the interphase nucleus.
    Mateos-Langerak J; Bohn M; de Leeuw W; Giromus O; Manders EM; Verschure PJ; Indemans MH; Gierman HJ; Heermann DW; van Driel R; Goetze S
    Proc Natl Acad Sci U S A; 2009 Mar; 106(10):3812-7. PubMed ID: 19234129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-specific interactions are sufficient to explain the position of heterochromatic chromocenters and nucleoli in interphase nuclei.
    de Nooijer S; Wellink J; Mulder B; Bisseling T
    Nucleic Acids Res; 2009 Jun; 37(11):3558-68. PubMed ID: 19359359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Models that include supercoiling of topological domains reproduce several known features of interphase chromosomes.
    Benedetti F; Dorier J; Burnier Y; Stasiak A
    Nucleic Acids Res; 2014 Mar; 42(5):2848-55. PubMed ID: 24366878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-specific (entropic) forces as major determinants of the structure of mammalian chromosomes.
    Finan K; Cook PR; Marenduzzo D
    Chromosome Res; 2011 Jan; 19(1):53-61. PubMed ID: 20714801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compartmentalization of interphase chromosomes observed in simulation and experiment.
    Münkel C; Eils R; Dietzel S; Zink D; Mehring C; Wedemann G; Cremer T; Langowski J
    J Mol Biol; 1999 Jan; 285(3):1053-65. PubMed ID: 9887267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatin folding--from biology to polymer models and back.
    Tark-Dame M; van Driel R; Heermann DW
    J Cell Sci; 2011 Mar; 124(Pt 6):839-45. PubMed ID: 21378305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Topology of chromosomes in somatic cells. Part 1].
    Zegało M; Wiland E; Kurpisz M
    Postepy Hig Med Dosw (Online); 2006; 60():331-42. PubMed ID: 16819432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin as an active polymeric material.
    Menon GI
    Emerg Top Life Sci; 2020 Sep; 4(2):111-118. PubMed ID: 32830859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.