BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 21246257)

  • 1. Overproduction of a rice aldo-keto reductase increases oxidative and heat stress tolerance by malondialdehyde and methylglyoxal detoxification.
    Turóczy Z; Kis P; Török K; Cserháti M; Lendvai A; Dudits D; Horváth GV
    Plant Mol Biol; 2011 Mar; 75(4-5):399-412. PubMed ID: 21246257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel aldo-keto reductase gene, OsAKR1, from rice confers higher tolerance to cadmium stress in rice by an in vivo reactive aldehyde detoxification.
    Guo R; Zhang Q; Chen CZ; Sun JY; Tu CY; He MX; Shen RF; Huang J; Zhu XF
    J Hazard Mater; 2024 May; 470():134212. PubMed ID: 38583205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of AKR4C15, a Novel Member of Aldo-Keto Reductase, in Comparison with Other Rice AKR(s).
    Auiyawong B; Narawongsanont R; Tantitadapitak C
    Protein J; 2017 Aug; 36(4):257-269. PubMed ID: 28699078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel aldo-keto reductase from Jatropha curcas L. (JcAKR) plays a crucial role in the detoxification of methylglyoxal, a potent electrophile.
    Mudalkar S; Sreeharsha RV; Reddy AR
    J Plant Physiol; 2016 May; 195():39-49. PubMed ID: 26995646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-function study of AKR4C14, an aldo-keto reductase from Thai jasmine rice (Oryza sativa L. ssp. indica cv. KDML105).
    Songsiriritthigul C; Narawongsanont R; Tantitadapitak C; Guan HH; Chen CJ
    Acta Crystallogr D Struct Biol; 2020 May; 76(Pt 5):472-483. PubMed ID: 32355043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aldo-keto reductase-1 (AKR1) protect cellular enzymes from salt stress by detoxifying reactive cytotoxic compounds.
    Vemanna RS; Babitha KC; Solanki JK; Amarnatha Reddy V; Sarangi SK; Udayakumar M
    Plant Physiol Biochem; 2017 Apr; 113():177-186. PubMed ID: 28222349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and characterization of AKR4C14, a rice aldo-keto reductase, from Thai Jasmine rice.
    Narawongsanont R; Kabinpong S; Auiyawong B; Tantitadapitak C
    Protein J; 2012 Jan; 31(1):35-42. PubMed ID: 22101802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel aldo-keto reductase from Escherichia coli can increase resistance to methylglyoxal toxicity.
    Grant AW; Steel G; Waugh H; Ellis EM
    FEMS Microbiol Lett; 2003 Jan; 218(1):93-9. PubMed ID: 12583903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methylglyoxal detoxification by an aldo-keto reductase in the cyanobacterium Synechococcus sp. PCC 7002.
    Xu D; Liu X; Guo C; Zhao J
    Microbiology (Reading); 2006 Jul; 152(Pt 7):2013-2021. PubMed ID: 16804176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aldo-keto reductase enzymes detoxify glyphosate and improve herbicide resistance in plants.
    Vemanna RS; Vennapusa AR; Easwaran M; Chandrashekar BK; Rao H; Ghanti K; Sudhakar C; Mysore KS; Makarla U
    Plant Biotechnol J; 2017 Jul; 15(7):794-804. PubMed ID: 27611904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glyoxal detoxification in Escherichia coli K-12 by NADPH dependent aldo-keto reductases.
    Lee C; Kim I; Park C
    J Microbiol; 2013 Aug; 51(4):527-30. PubMed ID: 23990306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NADPH-dependent reductases involved in the detoxification of reactive carbonyls in plants.
    Yamauchi Y; Hasegawa A; Taninaka A; Mizutani M; Sugimoto Y
    J Biol Chem; 2011 Mar; 286(9):6999-7009. PubMed ID: 21169366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A pathogenesis related-10 protein CaARP functions as aldo/keto reductase to scavenge cytotoxic aldehydes.
    Jain D; Khandal H; Khurana JP; Chattopadhyay D
    Plant Mol Biol; 2016 Jan; 90(1-2):171-87. PubMed ID: 26577640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative and reductive metabolism of lipid-peroxidation derived carbonyls.
    Singh M; Kapoor A; Bhatnagar A
    Chem Biol Interact; 2015 Jun; 234():261-73. PubMed ID: 25559856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PpAKR1A, a Novel Aldo-Keto Reductase from Physcomitrella Patens, Plays a Positive Role in Salt Stress.
    Chen L; Bao F; Tang S; Zuo E; Lv Q; Zhang D; Hu Y; Wang X; He Y
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31739643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glyoxalase III enhances salinity tolerance through reactive oxygen species scavenging and reduced glycation.
    Ghosh A; Mustafiz A; Pareek A; Sopory SK; Singla-Pareek SL
    Physiol Plant; 2022 May; 174(3):e13693. PubMed ID: 35483971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and expression of two novel aldo-keto reductases from Digitalis purpurea leaves.
    Gavidia I; Pérez-Bermúdez P; Seitz HU
    Eur J Biochem; 2002 Jun; 269(12):2842-50. PubMed ID: 12071946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant aldo-keto reductases (AKRs) as multi-tasking soldiers involved in diverse plant metabolic processes and stress defense: A structure-function update.
    Sengupta D; Naik D; Reddy AR
    J Plant Physiol; 2015 May; 179():40-55. PubMed ID: 25840343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A rice LSD1-like-type ZFP gene OsLOL5 enhances saline-alkaline tolerance in transgenic Arabidopsis thaliana, yeast and rice.
    Guan QJ; Ma HY; Wang ZJ; Wang ZY; Bu QY; Liu SK
    BMC Genomics; 2016 Feb; 17():142. PubMed ID: 26920613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Michaelis-Menten Kinetics Measurements of Aldo-Keto Reductases for Various Substrates in Murine Tissue.
    Morgenstern J; Kliemank E; Campos MC; Nawroth P; Fleming T
    STAR Protoc; 2020 Dec; 1(3):100206. PubMed ID: 33377100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.