These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 21246421)

  • 21. Transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into rat spinal cord injuries does not cause harm.
    Cloutier F; Siegenthaler MM; Nistor G; Keirstead HS
    Regen Med; 2006 Jul; 1(4):469-79. PubMed ID: 17465839
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stem Cells Therapy for Spinal Cord Injury.
    Gazdic M; Volarevic V; Harrell CR; Fellabaum C; Jovicic N; Arsenijevic N; Stojkovic M
    Int J Mol Sci; 2018 Mar; 19(4):. PubMed ID: 29601528
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Perspectives and future directions of human pluripotent stem cell-based therapies: lessons from Geron's clinical trial for spinal cord injury.
    Lukovic D; Stojkovic M; Moreno-Manzano V; Bhattacharya SS; Erceg S
    Stem Cells Dev; 2014 Jan; 23(1):1-4. PubMed ID: 23980630
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spinal cord injuries: how could cell therapy help?
    Badner A; Siddiqui AM; Fehlings MG
    Expert Opin Biol Ther; 2017 May; 17(5):529-541. PubMed ID: 28306359
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cellular therapy for treatment of spinal cord injury in Zebrafish model.
    Tayanloo-Beik A; Rabbani Z; Soveyzi F; Alavi-Moghadam S; Rezaei-Tavirani M; Goodarzi P; Arjmand B; Larijani B
    Mol Biol Rep; 2021 Feb; 48(2):1787-1800. PubMed ID: 33459959
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human embryonic stem cell-derived oligodendrocyte progenitors for the treatment of spinal cord injury.
    Faulkner J; Keirstead HS
    Transpl Immunol; 2005 Dec; 15(2):131-42. PubMed ID: 16412957
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stem cells ready for prime time.
    Wadman M
    Nature; 2009 Jan; 457(7229):516. PubMed ID: 19177087
    [No Abstract]   [Full Text] [Related]  

  • 28. Geron gets green light for human trial of ES cell-derived product.
    Alper J
    Nat Biotechnol; 2009 Mar; 27(3):213-4. PubMed ID: 19270655
    [No Abstract]   [Full Text] [Related]  

  • 29. Treatment of spinal cord injury: a review of engineering using neural and mesenchymal stem cells.
    Mortazavi MM; Harmon OA; Adeeb N; Deep A; Tubbs RS
    Clin Anat; 2015 Jan; 28(1):37-44. PubMed ID: 25156268
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adult-derived pluripotent stem cells.
    Faulkner SD; Vawda R; Fehlings MG
    World Neurosurg; 2014; 82(3-4):500-8. PubMed ID: 23948650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Concise Review: Laying the Groundwork for a First-In-Human Study of an Induced Pluripotent Stem Cell-Based Intervention for Spinal Cord Injury.
    Tsuji O; Sugai K; Yamaguchi R; Tashiro S; Nagoshi N; Kohyama J; Iida T; Ohkubo T; Itakura G; Isoda M; Shinozaki M; Fujiyoshi K; Kanemura Y; Yamanaka S; Nakamura M; Okano H
    Stem Cells; 2019 Jan; 37(1):6-13. PubMed ID: 30371964
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Restoring function after spinal cord injury: towards clinical translation of experimental strategies.
    Ramer LM; Ramer MS; Bradbury EJ
    Lancet Neurol; 2014 Dec; 13(12):1241-56. PubMed ID: 25453463
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Immunosuppressive mechanisms for stem cell transplant survival in spinal cord injury.
    Antonios JP; Farah GJ; Cleary DR; Martin JR; Ciacci JD; Pham MH
    Neurosurg Focus; 2019 Mar; 46(3):E9. PubMed ID: 30835678
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NADPH-d and Fos reactivity in the rat spinal cord following experimental spinal cord injury and embryonic neural stem cell transplantation.
    Dagci T; Sengul G; Keser A; Onal A
    Life Sci; 2011 Apr; 88(17-18):746-52. PubMed ID: 21376061
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Embryonic stem cells. Future perspectives].
    Groebner M; David R; Franz WM
    Internist (Berl); 2006 May; 47(5):502, 504-8. PubMed ID: 16609891
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Possible clinical usefulness of embryonic stem cells.
    Aznar J; Gómez I
    Rev Clin Esp; 2012 Sep; 212(8):403-6. PubMed ID: 22765959
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluating the first-in-human clinical trial of a human embryonic stem cell-based therapy.
    Chapman AR; Scala CC
    Kennedy Inst Ethics J; 2012 Sep; 22(3):243-61. PubMed ID: 23285793
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Updates on Therapeutics in Clinical Trials for Spinal Cord Injuries: Key Translational Applications of Human Embryonic Stem Cells-Derived Neural Progenitors.
    Zeb H; Khan IN; Munir I; Ramadan WS; Ahmad MA; Hussein D; Kamal MA; Al Karim S
    CNS Neurol Disord Drug Targets; 2016; 15(10):1266-1278. PubMed ID: 27719625
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stem cell based therapies for spinal cord injury.
    Muheremu A; Peng J; Ao Q
    Tissue Cell; 2016 Aug; 48(4):328-33. PubMed ID: 27318871
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Clinical Translation of Pluripotent Stem Cell Therapies: Challenges and Considerations.
    Desgres M; Menasché P
    Cell Stem Cell; 2019 Nov; 25(5):594-606. PubMed ID: 31703770
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.