These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 21246598)

  • 61. Freezing resistance of antifreeze-deficient larval Antarctic fish.
    Cziko PA; Evans CW; Cheng CH; DeVries AL
    J Exp Biol; 2006 Feb; 209(Pt 3):407-20. PubMed ID: 16424091
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Taxonomic re-appraisal for toothfish (Dissostichus: Notothenioidea) across the Antarctic Polar Front using genomic and morphological studies.
    Arkhipkin AI; Brickle P; Lee B; Shaw PW; McKeown NJ
    J Fish Biol; 2022 May; 100(5):1158-1170. PubMed ID: 35174488
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Morphology, characterization, and distribution of retinal photoreceptors in the Australian lungfish Neoceratodus forsteri (Krefft, 1870).
    Bailes HJ; Robinson SR; Trezise AE; Collin SP
    J Comp Neurol; 2006 Jan; 494(3):381-97. PubMed ID: 16320259
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The occurrence of dopaminergic interplexiform cells correlates with the presence of cones in the retinae of fish.
    Fröhlich E; Negishi K; Wagner HJ
    Vis Neurosci; 1995; 12(2):359-69. PubMed ID: 7786856
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Development of the gigantocerebellum of the weakly electric fish Pollimyrus.
    Haugedé-Carré F; Szabo T; Kirschbaum F
    J Physiol (Paris); 1979; 75(4):381-95. PubMed ID: 512971
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Non-Antarctic notothenioids: Past phylogenetic history and contemporary phylogeographic implications in the face of environmental changes.
    Papetti C; Windisch HS; La Mesa M; Lucassen M; Marshall C; Lamare MD
    Mar Genomics; 2016 Feb; 25():1-9. PubMed ID: 26610933
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes.
    Near TJ; Dornburg A; Kuhn KL; Eastman JT; Pennington JN; Patarnello T; Zane L; Fernández DA; Jones CD
    Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3434-9. PubMed ID: 22331888
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Cryptic species diversity in sub-Antarctic islands: A case study of Lepidonotothen.
    Dornburg A; Federman S; Eytan RI; Near TJ
    Mol Phylogenet Evol; 2016 Nov; 104():32-43. PubMed ID: 27421566
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Ontogenic retinal changes in three ecologically distinct elopomorph fishes (Elopomorpha:Teleostei) correlate with light environment and behavior.
    Taylor SM; Loew ER; Grace MS
    Vis Neurosci; 2015 Jan; 32():E005. PubMed ID: 26241034
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Cone and rod inputs to murine retinal ganglion cells: evidence of cone opsin specific channels.
    Ekesten B; Gouras P
    Vis Neurosci; 2005; 22(6):893-903. PubMed ID: 16469196
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Cold-stable eye lens crystallins of the Antarctic nototheniid toothfish Dissostichus mawsoni Norman.
    Kiss AJ; Mirarefi AY; Ramakrishnan S; Zukoski CF; Devries AL; Cheng CH
    J Exp Biol; 2004 Dec; 207(Pt 26):4633-49. PubMed ID: 15579559
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Afferent and efferent connections of the cerebellum of a salmonid, the rainbow trout (Oncorhynchus mykiss): a tract-tracing study.
    Folgueira M; Anadón R; Yáñez J
    J Comp Neurol; 2006 Aug; 497(4):542-65. PubMed ID: 16739164
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Photoreceptor and ganglion cell topographies correlate with information convergence and high acuity regions in the adult pigeon (Columba livia) retina.
    Querubin A; Lee HR; Provis JM; O'Brien KM
    J Comp Neurol; 2009 Dec; 517(5):711-22. PubMed ID: 19827162
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Brain organization and specialization in deep-sea chondrichthyans.
    Yopak KE; Montgomery JC
    Brain Behav Evol; 2008; 71(4):287-304. PubMed ID: 18431055
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Assembly of the antifreeze glycoprotein/trypsinogen-like protease genomic locus in the Antarctic toothfish Dissostichus mawsoni (Norman).
    Nicodemus-Johnson J; Silic S; Ghigliotti L; Pisano E; Cheng CH
    Genomics; 2011 Sep; 98(3):194-201. PubMed ID: 21684327
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Systematic implications of brain morphology in potamotrygonidae (Chondrichthyes: Myliobatiformes).
    Fontenelle JP; de Carvalho MR
    J Morphol; 2016 Feb; 277(2):252-63. PubMed ID: 26592726
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The hemoglobin system of Antarctic and non-Antarctic notothenioid fishes.
    D'Avino R; di Prisco G
    Comp Biochem Physiol A Physiol; 1997 Dec; 118(4):1045-9. PubMed ID: 12645547
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Bone microstructure and bone mineral density are not systemically different in Antarctic icefishes and related Antarctic notothenioids.
    Ashique AM; Atake OJ; Ovens K; Guo R; Pratt IV; Detrich HW; Cooper DML; Desvignes T; Postlethwait JH; Eames BF
    J Anat; 2022 Jan; 240(1):34-49. PubMed ID: 34423431
    [TBL] [Abstract][Full Text] [Related]  

  • 79. High mercury levels in Antarctic toothfish Dissostichus mawsoni from the Southwest Pacific sector of the Southern Ocean.
    Queirós JP; Hill SL; Pinkerton M; Vacchi M; Coelho JP; Pereira E; Ramos JA; Seco J; Stevens DW; Xavier JC
    Environ Res; 2020 Aug; 187():109680. PubMed ID: 32460095
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Accelerated evolution at chaperone promoters among Antarctic notothenioid fishes.
    Bogan SN; Place SP
    BMC Evol Biol; 2019 Nov; 19(1):205. PubMed ID: 31694524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.