BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 21246746)

  • 1. Lignin solubilization and aqueous phase reforming for the production of aromatic chemicals and hydrogen.
    Zakzeski J; Weckhuysen BM
    ChemSusChem; 2011 Mar; 4(3):369-78. PubMed ID: 21246746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic lignin valorization process for the production of aromatic chemicals and hydrogen.
    Zakzeski J; Jongerius AL; Bruijnincx PC; Weckhuysen BM
    ChemSusChem; 2012 Aug; 5(8):1602-9. PubMed ID: 22740175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ ATR-IR spectroscopic and reaction kinetics studies of water-gas shift and methanol reforming on Pt/Al2O3 catalysts in vapor and liquid phases.
    He R; Davda RR; Dumesic JA
    J Phys Chem B; 2005 Feb; 109(7):2810-20. PubMed ID: 16851292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mild hydrogenolysis of in-situ and isolated Pinus radiata lignins.
    Torr KM; van de Pas DJ; Cazeils E; Suckling ID
    Bioresour Technol; 2011 Aug; 102(16):7608-11. PubMed ID: 21664814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lignin depolymerisation in supercritical carbon dioxide/acetone/water fluid for the production of aromatic chemicals.
    Gosselink RJ; Teunissen W; van Dam JE; de Jong E; Gellerstedt G; Scott EL; Sanders JP
    Bioresour Technol; 2012 Feb; 106():173-7. PubMed ID: 22197338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of lignin using aqueous polyoxometalates in the presence of alcohols.
    Voitl T; Rudolf von Rohr P
    ChemSusChem; 2008; 1(8-9):763-9. PubMed ID: 18688829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water.
    Cortright RD; Davda RR; Dumesic JA
    Nature; 2002 Aug; 418(6901):964-7. PubMed ID: 12198544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactivity of lignin with different composition of aromatic syringyl/guaiacyl structures and erythro/threo side chain structures in β-O-4 type during alkaline delignification: as a basis for the different degradability of hardwood and softwood lignin.
    Shimizu S; Yokoyama T; Akiyama T; Matsumoto Y
    J Agric Food Chem; 2012 Jul; 60(26):6471-6. PubMed ID: 22694300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of kraft lignin under hydrothermal conditions.
    Zhou XF
    Bioresour Technol; 2014 Oct; 170():583-586. PubMed ID: 25176169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pyrolytic degradation of wood-derived lignin from pulping process.
    Shen DK; Gu S; Luo KH; Wang SR; Fang MX
    Bioresour Technol; 2010 Aug; 101(15):6136-46. PubMed ID: 20307972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic conversion of nonfood woody biomass solids to organic liquids.
    Barta K; Ford PC
    Acc Chem Res; 2014 May; 47(5):1503-12. PubMed ID: 24745655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen transfer from supercritical methanol over a solid base catalyst: a model for lignin depolymerization.
    Macala GS; Matson TD; Johnson CL; Lewis RS; Iretskii AV; Ford PC
    ChemSusChem; 2009; 2(3):215-7. PubMed ID: 19253927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational study of bond dissociation enthalpies for substituted β-O-4 lignin model compounds.
    Younker JM; Beste A; Buchanan AC
    Chemphyschem; 2011 Dec; 12(18):3556-65. PubMed ID: 22065478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydro- and solvothermolysis of kraft lignin for maximizing production of monomeric aromatic chemicals.
    Lee HS; Jae J; Ha JM; Suh DJ
    Bioresour Technol; 2016 Mar; 203():142-9. PubMed ID: 26722814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective, nickel-catalyzed hydrogenolysis of aryl ethers.
    Sergeev AG; Hartwig JF
    Science; 2011 Apr; 332(6028):439-43. PubMed ID: 21512027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvent effects on the hydrogenolysis of diphenyl ether with Raney nickel and their implications for the conversion of lignin.
    Wang X; Rinaldi R
    ChemSusChem; 2012 Aug; 5(8):1455-66. PubMed ID: 22549827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ni-catalyzed cleavage of aryl ethers in the aqueous phase.
    He J; Zhao C; Lercher JA
    J Am Chem Soc; 2012 Dec; 134(51):20768-75. PubMed ID: 23190332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative studies on the delignification of pine kraft-anthraquinone pulp with hydrogen peroxide by binucleus Mn(IV) complex catalysis.
    Chen CL; Capanema EA; Gracz HS
    J Agric Food Chem; 2003 Oct; 51(21):6223-32. PubMed ID: 14518948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrothermal conversion of lignin to substituted phenols and aromatic ethers.
    Singh R; Prakash A; Dhiman SK; Balagurumurthy B; Arora AK; Puri SK; Bhaskar T
    Bioresour Technol; 2014 Aug; 165():319-22. PubMed ID: 24636917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disassembly of lignin and chemical recovery in supercritical water and p-cresol mixture. Studies on lignin model compounds.
    Okuda K; Ohara S; Umetsu M; Takami S; Adschiri T
    Bioresour Technol; 2008 Apr; 99(6):1846-52. PubMed ID: 17540557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.