BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 2124676)

  • 1. Determination of the cis sequence involved in catabolite repression of the Bacillus subtilis gnt operon; implication of a consensus sequence in catabolite repression in the genus Bacillus.
    Miwa Y; Fujita Y
    Nucleic Acids Res; 1990 Dec; 18(23):7049-53. PubMed ID: 2124676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Promoter-independent catabolite repression of the Bacillus subtilis gnt operon.
    Miwa Y; Fujita Y
    J Biochem; 1993 Jun; 113(6):665-71. PubMed ID: 8370661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The gluconate operon gnt of Bacillus subtilis encodes its own transcriptional negative regulator.
    Fujita Y; Fujita T
    Proc Natl Acad Sci U S A; 1987 Jul; 84(13):4524-8. PubMed ID: 3037520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catabolite repression of the Bacillus subtilis gnt operon exerted by two catabolite-responsive elements.
    Miwa Y; Nagura K; Eguchi S; Fukuda H; Deutscher J; Fujita Y
    Mol Microbiol; 1997 Mar; 23(6):1203-13. PubMed ID: 9106211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleotide sequence and features of the Bacillus licheniformis gnt operon.
    Yoshida K; Seki S; Fujita Y
    DNA Res; 1994; 1(4):157-62. PubMed ID: 8535972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and nucleotide sequence of the promoter region of the Bacillus subtilis gluconate operon.
    Fujita Y; Fujita T
    Nucleic Acids Res; 1986 Feb; 14(3):1237-52. PubMed ID: 2419835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacillus subtilis GntR regulation modified to devise artificial transient induction systems.
    Majidian P; Kuse J; Tanaka K; Najafi H; Zeinalabedini M; Takenaka S; Yoshida KI
    J Gen Appl Microbiol; 2017 Jan; 62(6):277-285. PubMed ID: 27829583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific recognition of the Bacillus subtilis gnt cis-acting catabolite-responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr.
    Fujita Y; Miwa Y; Galinier A; Deutscher J
    Mol Microbiol; 1995 Sep; 17(5):953-60. PubMed ID: 8596444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organization and transcription of the gluconate operon, gnt, of Bacillus subtilis.
    Fujita Y; Fujita T; Miwa Y; Nihashi J; Aratani Y
    J Biol Chem; 1986 Oct; 261(29):13744-53. PubMed ID: 3020045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of an operator sequence for the Bacillus subtilis gnt operon.
    Fujita Y; Miwa Y
    J Biol Chem; 1989 Mar; 264(7):4201-6. PubMed ID: 2492998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catabolite repression of the Bacillus subtilis gnt operon mediated by the CcpA protein.
    Fujita Y; Miwa Y
    J Bacteriol; 1994 Jan; 176(2):511-3. PubMed ID: 8288545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and characterization of a repressor for the Bacillus subtilis gnt operon.
    Miwa Y; Fujita Y
    J Biol Chem; 1988 Sep; 263(26):13252-7. PubMed ID: 2843515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CcpB, a novel transcription factor implicated in catabolite repression in Bacillus subtilis.
    Chauvaux S; Paulsen IT; Saier MH
    J Bacteriol; 1998 Feb; 180(3):491-7. PubMed ID: 9457849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site.
    Wray LV; Pettengill FK; Fisher SH
    J Bacteriol; 1994 Apr; 176(7):1894-902. PubMed ID: 8144455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient utilization and operation of the gluconate-inducible system of the promoter of the Bacillus subtilis gnt operon in Escherichia coli.
    Miwa Y; Fujita Y
    J Bacteriol; 1987 Nov; 169(11):5333-5. PubMed ID: 3117776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catabolite repression of the operon for xylose utilization from Bacillus subtilis W23 is mediated at the level of transcription and depends on a cis site in the xylA reading frame.
    Jacob S; Allmansberger R; Gärtner D; Hillen W
    Mol Gen Genet; 1991 Oct; 229(2):189-96. PubMed ID: 1921970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon.
    Martin-Verstraete I; Stülke J; Klier A; Rapoport G
    J Bacteriol; 1995 Dec; 177(23):6919-27. PubMed ID: 7592486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis.
    Weickert MJ; Chambliss GH
    Proc Natl Acad Sci U S A; 1990 Aug; 87(16):6238-42. PubMed ID: 2117276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for posttranscriptional regulation of synthesis of the Bacillus subtilis Gnt repressor.
    Fujita Y; Fujita T; Miwa Y
    FEBS Lett; 1990 Jul; 267(1):71-4. PubMed ID: 2163901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of an insertional operator mutation (gntOi) that affects the expression level of the Bacillus subtilis gnt operon, and characterization of gntOi suppressor mutations.
    Yoshida K; Miwa Y; Ohmori H; Fujita Y
    Mol Gen Genet; 1995 Sep; 248(5):583-91. PubMed ID: 7476858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.