These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 2124676)

  • 1. Determination of the cis sequence involved in catabolite repression of the Bacillus subtilis gnt operon; implication of a consensus sequence in catabolite repression in the genus Bacillus.
    Miwa Y; Fujita Y
    Nucleic Acids Res; 1990 Dec; 18(23):7049-53. PubMed ID: 2124676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Promoter-independent catabolite repression of the Bacillus subtilis gnt operon.
    Miwa Y; Fujita Y
    J Biochem; 1993 Jun; 113(6):665-71. PubMed ID: 8370661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The gluconate operon gnt of Bacillus subtilis encodes its own transcriptional negative regulator.
    Fujita Y; Fujita T
    Proc Natl Acad Sci U S A; 1987 Jul; 84(13):4524-8. PubMed ID: 3037520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catabolite repression of the Bacillus subtilis gnt operon exerted by two catabolite-responsive elements.
    Miwa Y; Nagura K; Eguchi S; Fukuda H; Deutscher J; Fujita Y
    Mol Microbiol; 1997 Mar; 23(6):1203-13. PubMed ID: 9106211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleotide sequence and features of the Bacillus licheniformis gnt operon.
    Yoshida K; Seki S; Fujita Y
    DNA Res; 1994; 1(4):157-62. PubMed ID: 8535972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and nucleotide sequence of the promoter region of the Bacillus subtilis gluconate operon.
    Fujita Y; Fujita T
    Nucleic Acids Res; 1986 Feb; 14(3):1237-52. PubMed ID: 2419835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacillus subtilis GntR regulation modified to devise artificial transient induction systems.
    Majidian P; Kuse J; Tanaka K; Najafi H; Zeinalabedini M; Takenaka S; Yoshida KI
    J Gen Appl Microbiol; 2017 Jan; 62(6):277-285. PubMed ID: 27829583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific recognition of the Bacillus subtilis gnt cis-acting catabolite-responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr.
    Fujita Y; Miwa Y; Galinier A; Deutscher J
    Mol Microbiol; 1995 Sep; 17(5):953-60. PubMed ID: 8596444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organization and transcription of the gluconate operon, gnt, of Bacillus subtilis.
    Fujita Y; Fujita T; Miwa Y; Nihashi J; Aratani Y
    J Biol Chem; 1986 Oct; 261(29):13744-53. PubMed ID: 3020045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of an operator sequence for the Bacillus subtilis gnt operon.
    Fujita Y; Miwa Y
    J Biol Chem; 1989 Mar; 264(7):4201-6. PubMed ID: 2492998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catabolite repression of the Bacillus subtilis gnt operon mediated by the CcpA protein.
    Fujita Y; Miwa Y
    J Bacteriol; 1994 Jan; 176(2):511-3. PubMed ID: 8288545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and characterization of a repressor for the Bacillus subtilis gnt operon.
    Miwa Y; Fujita Y
    J Biol Chem; 1988 Sep; 263(26):13252-7. PubMed ID: 2843515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CcpB, a novel transcription factor implicated in catabolite repression in Bacillus subtilis.
    Chauvaux S; Paulsen IT; Saier MH
    J Bacteriol; 1998 Feb; 180(3):491-7. PubMed ID: 9457849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site.
    Wray LV; Pettengill FK; Fisher SH
    J Bacteriol; 1994 Apr; 176(7):1894-902. PubMed ID: 8144455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient utilization and operation of the gluconate-inducible system of the promoter of the Bacillus subtilis gnt operon in Escherichia coli.
    Miwa Y; Fujita Y
    J Bacteriol; 1987 Nov; 169(11):5333-5. PubMed ID: 3117776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catabolite repression of the operon for xylose utilization from Bacillus subtilis W23 is mediated at the level of transcription and depends on a cis site in the xylA reading frame.
    Jacob S; Allmansberger R; Gärtner D; Hillen W
    Mol Gen Genet; 1991 Oct; 229(2):189-96. PubMed ID: 1921970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon.
    Martin-Verstraete I; Stülke J; Klier A; Rapoport G
    J Bacteriol; 1995 Dec; 177(23):6919-27. PubMed ID: 7592486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis.
    Weickert MJ; Chambliss GH
    Proc Natl Acad Sci U S A; 1990 Aug; 87(16):6238-42. PubMed ID: 2117276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for posttranscriptional regulation of synthesis of the Bacillus subtilis Gnt repressor.
    Fujita Y; Fujita T; Miwa Y
    FEBS Lett; 1990 Jul; 267(1):71-4. PubMed ID: 2163901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of an insertional operator mutation (gntOi) that affects the expression level of the Bacillus subtilis gnt operon, and characterization of gntOi suppressor mutations.
    Yoshida K; Miwa Y; Ohmori H; Fujita Y
    Mol Gen Genet; 1995 Sep; 248(5):583-91. PubMed ID: 7476858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.