These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 2124676)
21. Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum. Letek M; Valbuena N; Ramos A; Ordóñez E; Gil JA; Mateos LM J Bacteriol; 2006 Jan; 188(2):409-23. PubMed ID: 16385030 [TBL] [Abstract][Full Text] [Related]
22. The characterization and cloning of a gluconate (gnt) operon of Bacillus subtilis. Fujita Y; Nihashi J; Fujita T J Gen Microbiol; 1986 Jan; 132(1):161-9. PubMed ID: 3011959 [TBL] [Abstract][Full Text] [Related]
23. Regulation of the putative bglPH operon for aryl-beta-glucoside utilization in Bacillus subtilis. Krüger S; Hecker M J Bacteriol; 1995 Oct; 177(19):5590-7. PubMed ID: 7559347 [TBL] [Abstract][Full Text] [Related]
24. Analysis of the transcriptional activity of the hut promoter in Bacillus subtilis and identification of a cis-acting regulatory region associated with catabolite repression downstream from the site of transcription. Oda M; Katagai T; Tomura D; Shoun H; Hoshino T; Furukawa K Mol Microbiol; 1992 Sep; 6(18):2573-82. PubMed ID: 1360137 [TBL] [Abstract][Full Text] [Related]
25. Analysis of the gluconate (gnt) operon of Bacillus subtilis. Reizer A; Deutscher J; Saier MH; Reizer J Mol Microbiol; 1991 May; 5(5):1081-9. PubMed ID: 1659648 [TBL] [Abstract][Full Text] [Related]
26. Bacillus subtilis gnt repressor mutants that diminish gluconate-binding ability. Yoshida K; Ohmori H; Miwa Y; Fujita Y J Bacteriol; 1995 Aug; 177(16):4813-6. PubMed ID: 7642511 [TBL] [Abstract][Full Text] [Related]
27. Catabolite repression of the Bacillus subtilis xyl operon involves a cis element functional in the context of an unrelated sequence, and glucose exerts additional xylR-dependent repression. Kraus A; Hueck C; Gärtner D; Hillen W J Bacteriol; 1994 Mar; 176(6):1738-45. PubMed ID: 8132469 [TBL] [Abstract][Full Text] [Related]
28. Analysis of Bacillus subtilis hut operon expression indicates that histidine-dependent induction is mediated primarily by transcriptional antitermination and that amino acid repression is mediated by two mechanisms: regulation of transcription initiation and inhibition of histidine transport. Wray LV; Fisher SH J Bacteriol; 1994 Sep; 176(17):5466-73. PubMed ID: 8071225 [TBL] [Abstract][Full Text] [Related]
29. Regulation of the rhaEWRBMA Operon Involved in l-Rhamnose Catabolism through Two Transcriptional Factors, RhaR and CcpA, in Bacillus subtilis. Hirooka K; Kodoi Y; Satomura T; Fujita Y J Bacteriol; 2015 Dec; 198(5):830-45. PubMed ID: 26712933 [TBL] [Abstract][Full Text] [Related]
30. Involvement of two distinct catabolite-responsive elements in catabolite repression of the Bacillus subtilis myo-inositol (iol) operon. Miwa Y; Fujita Y J Bacteriol; 2001 Oct; 183(20):5877-84. PubMed ID: 11566986 [TBL] [Abstract][Full Text] [Related]
31. Role of the DNA sequence downstream of the Bacillus subtilis hut promoter in regulation of the hut operon. Eda S; Hoshino T; Oda M Biosci Biotechnol Biochem; 2000 Mar; 64(3):484-91. PubMed ID: 10803944 [TBL] [Abstract][Full Text] [Related]
32. Regulation of mtl operon promoter of Bacillus subtilis: requirements of its use in expression vectors. Heravi KM; Wenzel M; Altenbuchner J Microb Cell Fact; 2011 Oct; 10():83. PubMed ID: 22014119 [TBL] [Abstract][Full Text] [Related]
33. Bacillus licheniformis alpha-amylase gene, amyL, is subject to promoter-independent catabolite repression in Bacillus subtilis. Laoide BM; Chambliss GH; McConnell DJ J Bacteriol; 1989 May; 171(5):2435-42. PubMed ID: 2540150 [TBL] [Abstract][Full Text] [Related]
34. Catabolite repression of the citST two-component system in Bacillus subtilis. Repizo GD; Blancato VS; Sender PD; Lolkema J; Magni C FEMS Microbiol Lett; 2006 Jul; 260(2):224-31. PubMed ID: 16842348 [TBL] [Abstract][Full Text] [Related]
35. Repression and catabolite repression of the lactose operon of Staphylococcus aureus. Oskouian B; Stewart GC J Bacteriol; 1990 Jul; 172(7):3804-12. PubMed ID: 2163387 [TBL] [Abstract][Full Text] [Related]
36. A target for carbon source-dependent negative regulation of the citB promoter of Bacillus subtilis. Fouet A; Sonenshein AL J Bacteriol; 1990 Feb; 172(2):835-44. PubMed ID: 2105305 [TBL] [Abstract][Full Text] [Related]
37. Transcription-repair coupling factor is involved in carbon catabolite repression of the Bacillus subtilis hut and gnt operons. Zalieckas JM; Wray LV; Ferson AE; Fisher SH Mol Microbiol; 1998 Mar; 27(5):1031-8. PubMed ID: 9535092 [TBL] [Abstract][Full Text] [Related]
38. Cloning and sequencing of a 36-kb region of the Bacillus subtilis genome between the gnt and iol operons. Yoshida K; Seki S; Fujimura M; Miwa Y; Fujita Y DNA Res; 1995; 2(2):61-9. PubMed ID: 7584049 [TBL] [Abstract][Full Text] [Related]
39. Cloning and molecular genetic characterization of the Escherichia coli gntR, gntK, and gntU genes of GntI, the main system for gluconate metabolism. Tong S; Porco A; Isturiz T; Conway T J Bacteriol; 1996 Jun; 178(11):3260-9. PubMed ID: 8655507 [TBL] [Abstract][Full Text] [Related]
40. Catabolite repression of the Bacillus subtilis FadR regulon, which is involved in fatty acid catabolism. Tojo S; Satomura T; Matsuoka H; Hirooka K; Fujita Y J Bacteriol; 2011 May; 193(10):2388-95. PubMed ID: 21398533 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]