These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 21246998)

  • 21. Anthropogenic water bodies as drought refuge for aquatic macroinvertebrates and macrophytes.
    Dodemaide DT; Matthews TG; Iervasi D; Lester RE
    Sci Total Environ; 2018 Mar; 616-617():543-553. PubMed ID: 29128841
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Responses of aquatic macrophytes to anthropogenic pressures: comparison between macrophyte metrics and indices.
    Camargo JA
    Environ Monit Assess; 2018 Feb; 190(3):173. PubMed ID: 29480431
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Emergent Macrophytes Support Zooplankton in a Shallow Tropical Lake: A Basis for Wetland Conservation.
    Gebrehiwot M; Kifle D; Triest L
    Environ Manage; 2017 Dec; 60(6):1127-1138. PubMed ID: 28887591
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Climate warming and heat waves affect reproductive strategies and interactions between submerged macrophytes.
    Li Z; He L; Zhang H; Urrutia-Cordero P; Ekvall MK; Hollander J; Hansson LA
    Glob Chang Biol; 2017 Jan; 23(1):108-116. PubMed ID: 27359059
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact assessment of the introduction of Cichla kelberi in a large Neotropical reservoir and its lateral lagoons (Upper Paraná River Basin, Brazil).
    Ferrareze M; Nogueira MG
    Braz J Biol; 2015 Nov; 75(4):1018-26. PubMed ID: 26675920
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aquatic macroinvertebrates associated with Eichhornia azurea (Swartz) Kunth and relationships with abiotic factors in marginal lentic ecosystems (São Paulo, Brazil).
    Silva CV; Henry R
    Braz J Biol; 2013 Feb; 73(1):149-62. PubMed ID: 23644797
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure of aquatic vegetation of a large lake, western border of the Brazilian Pantanal.
    Cunha NL; Delatorre M; Rodrigues RB; Vidotto C; Gonçalves F; Scremin-Dias E; Damasceno-Júnior G; Pott VJ; Pott A
    Braz J Biol; 2012 Aug; 72(3):519-31. PubMed ID: 22990823
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Algae mediate submerged macrophyte response to nutrient and dissolved inorganic carbon loading: a mesocosm study on different species.
    Xie D; Yu D; You WH; Wang LG
    Chemosphere; 2013 Oct; 93(7):1301-8. PubMed ID: 23958444
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nutrient release and uptake by littoral macrophytes during water level fluctuations.
    Lu J; Bunn SE; Burford MA
    Sci Total Environ; 2018 May; 622-623():29-40. PubMed ID: 29202366
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Preliminary survey on aquatic vegetations in Baiyangdian Lake].
    Li F; Xie YH; Yang G; Ren B; Hou ZY; Qin XY
    Ying Yong Sheng Tai Xue Bao; 2008 Jul; 19(7):1597-603. PubMed ID: 18839925
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Association Between the Success of an Invasive Macrophyte, Environmental Variables and Abundance of a Competing Native Macrophyte.
    Pulzatto MM; Cunha ER; Dainez-Filho MS; Thomaz SM
    Front Plant Sci; 2019; 10():514. PubMed ID: 31134104
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mercury in aquatic forage of large herbivores: impact of environmental conditions, assessment of health threats, and implications for transfer across ecosystem compartments.
    Bergman BG; Bump JK
    Sci Total Environ; 2014 May; 479-480():66-76. PubMed ID: 24534700
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aquatic macrophyte and macroinvertebrate diversity and conservation in wetlands of the Sinos River basin.
    Maltchik L; Rolon AS; Stenert C
    Braz J Biol; 2010 Dec; 70(4 Suppl):1179-84. PubMed ID: 21225159
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Can rice field channels contribute to biodiversity conservation in Southern Brazilian wetlands?
    Maltchik L; Rolon AS; Stenert C; Machado IF; Rocha O
    Rev Biol Trop; 2011 Dec; 59(4):1895-914. PubMed ID: 22208101
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Aquatic macrophytes from a marginal lake of the Embu-mirim river, São Paulo, Brazil].
    Beyruth Z
    Rev Saude Publica; 1992 Aug; 26(4):272-82. PubMed ID: 1342512
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Urbanization effects on the composition and structure of macrophytes communities in a lotic ecosystem of Pernambuco State, Brazil.
    Xavier LR; Scherner F; Burgos DC; Barreto RC; Pereira SM
    Braz J Biol; 2016; 76(4):888-897. PubMed ID: 27224730
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strong indirect effects of a submersed aquatic macrophyte, Vallisneria americana, on bacterioplankton densities in a mesotrophic lake.
    Huss AA; Wehr JD
    Microb Ecol; 2004 May; 47(4):305-15. PubMed ID: 15037963
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fish associated with aquatic macrophytes in the Chacororé-Sinhá Mariana Lake system and Mutum River, Pantanal of Mato Grosso, Brazil.
    Pacheco EB; Da-Silva CJ
    Braz J Biol; 2009 Feb; 69(1):101-8. PubMed ID: 19347151
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxygen uptake from aquatic macrophyte decomposition from Piraju Reservoir (Piraju, SP, Brazil).
    Bianchini I; Cunha-Santino MB; Panhota RS
    Braz J Biol; 2011 Feb; 71(1):27-35. PubMed ID: 21437396
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ichthyofauna diversity of Taperoá II reservoir, semi-arid region of Paraíba, Brazil.
    Montenegro AK; Torelli JE; Crispim MC; Hernández MI; Medeiros AM
    Braz J Biol; 2012 Feb; 72(1):113-20. PubMed ID: 22437391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.