BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 21247485)

  • 1. Darkfield-confocal microscopy detection of nanoscale particle internalization by human lung cells.
    Gibbs-Flournoy EA; Bromberg PA; Hofer TP; Samet JM; Zucker RM
    Part Fibre Toxicol; 2011 Jan; 8(1):2. PubMed ID: 21247485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of Dark-Field and Confocal Microscopy for the Optical Detection of Silver and Titanium Nanoparticles in Mammalian Cells.
    Zucker RM; Boyes WK
    Methods Mol Biol; 2020; 2118():395-414. PubMed ID: 32152994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Confocal and Super-Resolution Reflectance Imaging of Metal Oxide Nanoparticles.
    Guggenheim EJ; Khan A; Pike J; Chang L; Lynch I; Rappoport JZ
    PLoS One; 2016; 11(10):e0159980. PubMed ID: 27695038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A systematic electron microscopic study on the uptake of barium sulphate nano-, submicro-, microparticles by bone marrow-derived phagocytosing cells.
    Sokolova V; Loza K; Knuschke T; Heinen-Weiler J; Jastrow H; Hasenberg M; Buer J; Westendorf AM; Gunzer M; Epple M
    Acta Biomater; 2018 Oct; 80():352-363. PubMed ID: 30240952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deciphering the mechanisms of cellular uptake of engineered nanoparticles by accurate evaluation of internalization using imaging flow cytometry.
    Vranic S; Boggetto N; Contremoulins V; Mornet S; Reinhardt N; Marano F; Baeza-Squiban A; Boland S
    Part Fibre Toxicol; 2013 Feb; 10():2. PubMed ID: 23388071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying size-dependent interactions between fluorescently labeled polystyrene nanoparticles and mammalian cells.
    Varela JA; Bexiga MG; Åberg C; Simpson JC; Dawson KA
    J Nanobiotechnology; 2012 Sep; 10():39. PubMed ID: 23006133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescent Submicron-Sized Poly(heptafluoro-
    Jarzębski M; Siejak P; Przeor M; Gapiński J; Woźniak A; Baranowska HM; Pawlicz J; Baryła-Pankiewicz E; Szwajca A
    Molecules; 2020 Apr; 25(9):. PubMed ID: 32344920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel and facile approach to imaging nanoparticles transport across Transwell filter grown cell monolayer in real-time and in situ under confocal laser scanning microscopy.
    Zhao S; Yuan L; Wang J; Zhang X; He Z; Zhang Q
    Biol Pharm Bull; 2012; 35(3):335-45. PubMed ID: 22382319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of confocal microscopy for nanoparticle drug delivery through skin.
    Zhang LW; Monteiro-Riviere NA
    J Biomed Opt; 2013 Jun; 18(6):061214. PubMed ID: 23224242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of gold nanoparticle cell uptake under controlled biological conditions and adequate resolution.
    Rothen-Rutishauser B; Kuhn DA; Ali Z; Gasser M; Amin F; Parak WJ; Vanhecke D; Fink A; Gehr P; Brandenberger C
    Nanomedicine (Lond); 2014 Apr; 9(5):607-21. PubMed ID: 23738633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the Subcellular Distribution of Liposomes Using Confocal Microscopy.
    Solomon MA
    Methods Mol Biol; 2017; 1522():119-130. PubMed ID: 27837535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneous photobleaching in confocal microscopy caused by differences in refractive index and excitation mode.
    Van Oostveldt P; Verhaegen F; Messens K
    Cytometry; 1998 Jun; 32(2):137-46. PubMed ID: 9627227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of fluorescent organic nanoparticles by confocal laser endomicroscopy in a rat model of Barrett's esophageal adenocarcinoma.
    Dassie E; Arcidiacono D; Wasiak I; Damiano N; Dall'Olmo L; Giacometti C; Facchin S; Cassaro M; Guido E; De Lazzari F; Marin O; Ciach T; Fery-Forgues S; Alberti A; Battaglia G; Realdon S
    Int J Nanomedicine; 2015; 10():6811-23. PubMed ID: 26586943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence excitation analysis by two-photon confocal laser scanning microscopy: a new method to identify fluorescent nanoparticles on histological tissue sections.
    Kahn E; Tissot N; Frere P; Dauphin A; Boumhras M; Bachelet CM; Frouin F; Lizard G
    Int J Nanomedicine; 2012; 7():5545-54. PubMed ID: 23109806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracking nanoparticles in three-dimensional tissue-engineered models using confocal laser scanning microscopy.
    Hearnden V; MacNeil S; Battaglia G
    Methods Mol Biol; 2011; 695():41-51. PubMed ID: 21042964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence-encoded gold nanoparticles: library design and modulation of cellular uptake into dendritic cells.
    Rodriguez-Lorenzo L; Fytianos K; Blank F; von Garnier C; Rothen-Rutishauser B; Petri-Fink A
    Small; 2014 Apr; 10(7):1341-50. PubMed ID: 24482355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deposition behavior of inhaled nanostructured TiO2 in rats: fractions of particle diameter below 100 nm (nanoscale) and the slicing bias of transmission electron microscopy.
    Morfeld P; Treumann S; Ma-Hock L; Bruch J; Landsiedel R
    Inhal Toxicol; 2012 Dec; 24(14):939-51. PubMed ID: 23216155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clathrin and caveolin-1 expression in primary pigmented rabbit conjunctival epithelial cells: role in PLGA nanoparticle endocytosis.
    Qaddoumi MG; Gukasyan HJ; Davda J; Labhasetwar V; Kim KJ; Lee VH
    Mol Vis; 2003 Oct; 9():559-68. PubMed ID: 14566223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of two-photon excitation laser scanning microscopy with UV-confocal laser scanning microscopy in three-dimensional calcium imaging using the fluorescence indicator Indo-1.
    Sako Y; Sekihata A; Yanagisawa Y; Yamamoto M; Shimada Y; Ozaki K; Kusumi A
    J Microsc; 1997 Jan; 185(Pt 1):9-20. PubMed ID: 9057318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy independent uptake and release of polystyrene nanoparticles in primary mammalian cell cultures.
    Fiorentino I; Gualtieri R; Barbato V; Mollo V; Braun S; Angrisani A; Turano M; Furia M; Netti PA; Guarnieri D; Fusco S; Talevi R
    Exp Cell Res; 2015 Jan; 330(2):240-247. PubMed ID: 25246129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.