These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 21247765)

  • 1. Calculating gait kinematics using MR-based kinematic models.
    Scheys L; Desloovere K; Spaepen A; Suetens P; Jonkers I
    Gait Posture; 2011 Feb; 33(2):158-64. PubMed ID: 21247765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Personalized MR-based musculoskeletal models compared to rescaled generic models in the presence of increased femoral anteversion: effect on hip moment arm lengths.
    Scheys L; Van Campenhout A; Spaepen A; Suetens P; Jonkers I
    Gait Posture; 2008 Oct; 28(3):358-65. PubMed ID: 18571416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculated moment-arm and muscle-tendon lengths during gait differ substantially using MR based versus rescaled generic lower-limb musculoskeletal models.
    Scheys L; Spaepen A; Suetens P; Jonkers I
    Gait Posture; 2008 Nov; 28(4):640-8. PubMed ID: 18534855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Level of subject-specific detail in musculoskeletal models affects hip moment arm length calculation during gait in pediatric subjects with increased femoral anteversion.
    Scheys L; Desloovere K; Suetens P; Jonkers I
    J Biomech; 2011 Apr; 44(7):1346-53. PubMed ID: 21295307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization.
    Duprey S; Cheze L; Dumas R
    J Biomech; 2010 Oct; 43(14):2858-62. PubMed ID: 20701914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy of generic musculoskeletal models in predicting the functional roles of muscles in human gait.
    Correa TA; Baker R; Graham HK; Pandy MG
    J Biomech; 2011 Jul; 44(11):2096-105. PubMed ID: 21703627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of hip joint centre mislocation on gait kinematics of children with cerebral palsy calculated using patient-specific direct and inverse kinematic models.
    Kainz H; Carty CP; Maine S; Walsh HPJ; Lloyd DG; Modenese L
    Gait Posture; 2017 Sep; 57():154-160. PubMed ID: 28641160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity of tibio-menisco-femoral joint contact behavior to variations in knee kinematics.
    Yao J; Salo AD; Lee J; Lerner AL
    J Biomech; 2008; 41(2):390-8. PubMed ID: 17950743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in lower limb transverse plane joint moments during gait when expressed in two alternative reference frames.
    Schache AG; Baker R; Vaughan CL
    J Biomech; 2007; 40(1):9-19. PubMed ID: 16442547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gait patterns in hemiplegic children with Cerebral Palsy: comparison of right and left hemiplegia.
    Galli M; Cimolin V; Rigoldi C; Tenore N; Albertini G
    Res Dev Disabil; 2010; 31(6):1340-5. PubMed ID: 20674265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can the reliability of three-dimensional running kinematics be improved using functional joint methodology?
    Pohl MB; Lloyd C; Ferber R
    Gait Posture; 2010 Oct; 32(4):559-63. PubMed ID: 20732816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of variability in anatomical landmark location on knee kinematic description.
    Morton NA; Maletsky LP; Pal S; Laz PJ
    J Orthop Res; 2007 Sep; 25(9):1221-30. PubMed ID: 17506082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing a technique to measure intra-limb coordination in gait: applicable to children with cerebral palsy.
    Farmer SE; Pearce G; Stewart C
    Gait Posture; 2008 Aug; 28(2):217-21. PubMed ID: 18276142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A three-dimensional kinematic and dynamic study of the lower limb during the stance phase of gait using an homogeneous matrix approach.
    Doriot N; Chèze L
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):21-7. PubMed ID: 14723490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repeatability of 3D gait kinematics obtained from an electromagnetic tracking system during treadmill locomotion.
    Mills PM; Morrison S; Lloyd DG; Barrett RS
    J Biomech; 2007; 40(7):1504-11. PubMed ID: 16919639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative assessment of bone pose estimation using Point Cluster Technique and OpenSim.
    Lathrop RL; Chaudhari AM; Siston RA
    J Biomech Eng; 2011 Nov; 133(11):114503. PubMed ID: 22168744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do kinematic models reduce the effects of soft tissue artefacts in skin marker-based motion analysis? An in vivo study of knee kinematics.
    Andersen MS; Benoit DL; Damsgaard M; Ramsey DK; Rasmussen J
    J Biomech; 2010 Jan; 43(2):268-73. PubMed ID: 19879581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subject-specific hip geometry and hip joint centre location affects calculated contact forces at the hip during gait.
    Lenaerts G; Bartels W; Gelaude F; Mulier M; Spaepen A; Van der Perre G; Jonkers I
    J Biomech; 2009 Jun; 42(9):1246-51. PubMed ID: 19464012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two methods of calculating thorax kinematics in children with myelomeningocele.
    Nguyen TC; Baker R
    Clin Biomech (Bristol, Avon); 2004 Dec; 19(10):1060-5. PubMed ID: 15531057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation between lower limb bone morphology and gait characteristics in children with spastic diplegic cerebral palsy.
    Carriero A; Zavatsky A; Stebbins J; Theologis T; Shefelbine SJ
    J Pediatr Orthop; 2009; 29(1):73-9. PubMed ID: 19098651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.