These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 21247789)

  • 1. A durable, low-cost electrogoniometer for dynamic measurement of joint trajectories.
    Wang PT; King CE; Do AH; Nenadic Z
    Med Eng Phys; 2011 Jun; 33(5):546-52. PubMed ID: 21247789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of measurements obtained by use of an electrogoniometer and a universal plastic goniometer for the assessment of joint motion in dogs.
    Thomas TM; Marcellin-Little DJ; Roe SC; Lascelles BD; Brosey BP
    Am J Vet Res; 2006 Dec; 67(12):1974-9. PubMed ID: 17144796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and evaluation of a novel low-cost sensor-based knee flexion angle measurement system.
    Saggio G; Quitadamo LR; Albero L
    Knee; 2014 Oct; 21(5):896-901. PubMed ID: 25022838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy and feasibility of using an electrogoniometer for measuring simple thumb movements.
    Jonsson P; Johnson PW; Hagberg M
    Ergonomics; 2007 May; 50(5):647-59. PubMed ID: 17454085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and validation of a user-friendly data logger (SUDALS) for use with flexible electrogoniometers to measure joint movement in clinical trials.
    Indramohan VP; Valsan G; Rowe PJ
    J Med Eng Technol; 2009; 33(8):650-5. PubMed ID: 19848859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Movement of finger joints induced by synergistic wrist motion.
    Su FC; Chou YL; Yang CS; Lin GT; An KN
    Clin Biomech (Bristol, Avon); 2005 Jun; 20(5):491-7. PubMed ID: 15836936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving goniometer accuracy by compensating for individual transducer characteristics.
    Sato Tde O; Coury HJ; Hansson GA
    J Electromyogr Kinesiol; 2009 Aug; 19(4):704-9. PubMed ID: 18316206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inertial sensor-based knee flexion/extension angle estimation.
    Cooper G; Sheret I; McMillan L; Siliverdis K; Sha N; Hodgins D; Kenney L; Howard D
    J Biomech; 2009 Dec; 42(16):2678-85. PubMed ID: 19782986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The accuracy of goniometric measurements of proximal interphalangeal joints in fresh cadavers: comparison between methods of measurement, types of goniometers, and fingers.
    Kato M; Echigo A; Ohta H; Ishiai S; Aoki M; Tsubota S; Uchiyama E
    J Hand Ther; 2007; 20(1):12-8; quiz 19. PubMed ID: 17254904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validity of goniometric joint measurements in cats.
    Jaeger GH; Marcellin-Little DJ; Depuy V; Lascelles BD
    Am J Vet Res; 2007 Aug; 68(8):822-6. PubMed ID: 17669021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of Finger Joint Angles Based on Electromechanical Sensing of Wrist Shape.
    Kawaguchi J; Yoshimoto S; Kuroda Y; Oshiro O
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1409-1418. PubMed ID: 27845665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of strain-gage and fiber-optic goniometry for measuring knee kinematics during activities of daily living and exercise.
    Mohamed AA; Baba J; Beyea J; Landry J; Sexton A; McGibbon CA
    J Biomech Eng; 2012 Aug; 134(8):084502. PubMed ID: 22938362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method for estimating three-dimensional human arm movement with two electromagnetic sensors.
    Rezzoug N; Jacquier-Bret J; Gorce P
    Comput Methods Biomech Biomed Engin; 2010 Dec; 13(6):663-8. PubMed ID: 21153971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel approach to ambulatory assessment of human segmental orientation on a wearable sensor system.
    Liu K; Liu T; Shibata K; Inoue Y; Zheng R
    J Biomech; 2009 Dec; 42(16):2747-52. PubMed ID: 19748624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliability of shoulder range of motion comparing a goniometer to a digital level.
    Mullaney MJ; McHugh MP; Johnson CP; Tyler TF
    Physiother Theory Pract; 2010 Jul; 26(5):327-33. PubMed ID: 20557263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joint-angle-dependent neuromuscular dysfunctions at the wrist in persons after stroke.
    Hu X; Tong K; Tsang VS; Song R
    Arch Phys Med Rehabil; 2006 May; 87(5):671-9. PubMed ID: 16635630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wrist electrogoniometry: are current mathematical correction procedures effective in reducing crosstalk in functional assessment?
    Foltran FA; Silva LC; Sato TO; Coury HJ
    Braz J Phys Ther; 2013; 17(1):32-40. PubMed ID: 23538456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Range of motion measurements: reference values and a database for comparison studies.
    Soucie JM; Wang C; Forsyth A; Funk S; Denny M; Roach KE; Boone D;
    Haemophilia; 2011 May; 17(3):500-7. PubMed ID: 21070485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel approach to joint flexion/extension angles measurement based on wearable UWB radios.
    Qi Y; Soh CB; Gunawan E; Low KS; Maskooki A
    IEEE J Biomed Health Inform; 2014 Jan; 18(1):300-8. PubMed ID: 24403428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Goniometry and Electrogoniometry of Carpus and Elbow Joints in the Barred Owl (
    Gjeltema JL; Degernes LA; Buckanoff HD; Marcellin-Little DJ
    J Avian Med Surg; 2018 Dec; 32(4):267-278. PubMed ID: 31112639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.