These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 21247949)

  • 1. Modelling the initial phase of an epidemic using incidence and infection network data: 2009 H1N1 pandemic in Israel as a case study.
    Katriel G; Yaari R; Huppert A; Roll U; Stone L
    J R Soc Interface; 2011 Jun; 8(59):856-67. PubMed ID: 21247949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Onset of a pandemic: characterizing the initial phase of the swine flu (H1N1) epidemic in Israel.
    Roll U; Yaari R; Katriel G; Barnea O; Stone L; Mendelson E; Mandelboim M; Huppert A
    BMC Infect Dis; 2011 Apr; 11():92. PubMed ID: 21492430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian estimation of the dynamics of pandemic (H1N1) 2009 influenza transmission in Queensland: A space-time SIR-based model.
    Huang X; Clements AC; Williams G; Mengersen K; Tong S; Hu W
    Environ Res; 2016 Apr; 146():308-14. PubMed ID: 26799511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determinants of the spatiotemporal dynamics of the 2009 H1N1 pandemic in Europe: implications for real-time modelling.
    Merler S; Ajelli M; Pugliese A; Ferguson NM
    PLoS Comput Biol; 2011 Sep; 7(9):e1002205. PubMed ID: 21980281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pros and cons of estimating the reproduction number from early epidemic growth rate of influenza A (H1N1) 2009.
    Nishiura H; Chowell G; Safan M; Castillo-Chavez C
    Theor Biol Med Model; 2010 Jan; 7():1. PubMed ID: 20056004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early estimation of the reproduction number in the presence of imported cases: pandemic influenza H1N1-2009 in New Zealand.
    Roberts MG; Nishiura H
    PLoS One; 2011; 6(5):e17835. PubMed ID: 21637342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating transmission probability in schools for the 2009 H1N1 influenza pandemic in Italy.
    Clamer V; Dorigatti I; Fumanelli L; Rizzo C; Pugliese A
    Theor Biol Med Model; 2016 Oct; 13(1):19. PubMed ID: 27729047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian estimation of the effective reproduction number for pandemic influenza A H1N1 in Guangdong Province, China.
    Yang F; Yuan L; Tan X; Huang C; Feng J
    Ann Epidemiol; 2013 Jun; 23(6):301-6. PubMed ID: 23683708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epidemic modelling: aspects where stochasticity matters.
    Britton T; Lindenstrand D
    Math Biosci; 2009 Dec; 222(2):109-16. PubMed ID: 19837097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time forecasting of an epidemic using a discrete time stochastic model: a case study of pandemic influenza (H1N1-2009).
    Nishiura H
    Biomed Eng Online; 2011 Feb; 10():15. PubMed ID: 21324153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling seasonal influenza in Israel.
    Barnea O; Yaari R; Katriel G; Stone L
    Math Biosci Eng; 2011 Apr; 8(2):561-73. PubMed ID: 21631146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating epidemic parameters: Application to H1N1 pandemic data.
    Schwartz EJ; Choi B; Rempala GA
    Math Biosci; 2015 Dec; 270(Pt B):198-203. PubMed ID: 25843353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approximate Bayesian algorithm to estimate the basic reproduction number in an influenza pandemic using arrival times of imported cases.
    Chong KC; Zee BCY; Wang MH
    Travel Med Infect Dis; 2018; 23():80-86. PubMed ID: 29653203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seasonal transmission potential and activity peaks of the new influenza A(H1N1): a Monte Carlo likelihood analysis based on human mobility.
    Balcan D; Hu H; Goncalves B; Bajardi P; Poletto C; Ramasco JJ; Paolotti D; Perra N; Tizzoni M; Van den Broeck W; Colizza V; Vespignani A
    BMC Med; 2009 Sep; 7():45. PubMed ID: 19744314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time quantification of the next-generation matrix and age-dependent forecasting of pandemic influenza H1N1 2009 in Japan.
    Ejima K; Nishiura H
    Ann Epidemiol; 2018 May; 28(5):301-308. PubMed ID: 29510904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in severity of 2009 pandemic A/H1N1 influenza in England: a Bayesian evidence synthesis.
    Presanis AM; Pebody RG; Paterson BJ; Tom BD; Birrell PJ; Charlett A; Lipsitch M; De Angelis D
    BMJ; 2011 Sep; 343():d5408. PubMed ID: 21903689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling under-reporting in epidemics.
    Gamado KM; Streftaris G; Zachary S
    J Math Biol; 2014 Sep; 69(3):737-65. PubMed ID: 23942791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating the burden of A(H1N1)pdm09 influenza in Finland during two seasons.
    Shubin M; Virtanen M; Toikkanen S; Lyytikäinen O; Auranen K
    Epidemiol Infect; 2014 May; 142(5):964-74. PubMed ID: 24139316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling and analysis of influenza A (H1N1) on networks.
    Jin Z; Zhang J; Song LP; Sun GQ; Kan J; Zhu H
    BMC Public Health; 2011 Feb; 11 Suppl 1(Suppl 1):S9. PubMed ID: 21356138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A statistical method utilizing information of imported cases to estimate the transmissibility for an influenza pandemic.
    Chong KC; Zee BC; Wang MH
    BMC Med Res Methodol; 2017 Feb; 17(1):31. PubMed ID: 28222682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.