BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 21248123)

  • 1. Neural basis of superior performance of action videogame players in an attention-demanding task.
    Mishra J; Zinni M; Bavelier D; Hillyard SA
    J Neurosci; 2011 Jan; 31(3):992-8. PubMed ID: 21248123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-Time Strategy Video Game Experience and Visual Perceptual Learning.
    Kim YH; Kang DW; Kim D; Kim HJ; Sasaki Y; Watanabe T
    J Neurosci; 2015 Jul; 35(29):10485-92. PubMed ID: 26203143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of action video game experience on the time course of inhibition of return and the efficiency of visual search.
    Castel AD; Pratt J; Drummond E
    Acta Psychol (Amst); 2005 Jun; 119(2):217-30. PubMed ID: 15877981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective attention to stimulus location modulates the steady-state visual evoked potential.
    Morgan ST; Hansen JC; Hillyard SA
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4770-4. PubMed ID: 8643478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Too little, too late, and in the wrong place: Alpha band activity does not reflect an active mechanism of selective attention.
    Antonov PA; Chakravarthi R; Andersen SK
    Neuroimage; 2020 Oct; 219():117006. PubMed ID: 32485307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attentional Selection of Feature Conjunctions Is Accomplished by Parallel and Independent Selection of Single Features.
    Andersen SK; Müller MM; Hillyard SA
    J Neurosci; 2015 Jul; 35(27):9912-9. PubMed ID: 26156992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Action video game experience affects oculomotor performance.
    West GL; Al-Aidroos N; Pratt J
    Acta Psychol (Amst); 2013 Jan; 142(1):38-42. PubMed ID: 23220058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulus- and goal-driven control of eye movements: action videogame players are faster but not better.
    Heimler B; Pavani F; Donk M; van Zoest W
    Atten Percept Psychophys; 2014 Nov; 76(8):2398-412. PubMed ID: 25073611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Earlier visual N1 latencies in expert video-game players: a temporal basis of enhanced visuospatial performance?
    Latham AJ; Patston LL; Westermann C; Kirk IJ; Tippett LJ
    PLoS One; 2013; 8(9):e75231. PubMed ID: 24058667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light Video Game Play is Associated with Enhanced Visual Processing of Rapid Serial Visual Presentation Targets.
    Howard CJ; Wilding R; Guest D
    Perception; 2017 Feb; 46(2):161-177. PubMed ID: 27697909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of video game play on the characteristics of saccadic eye movements.
    Mack DJ; Ilg UJ
    Vision Res; 2014 Sep; 102():26-32. PubMed ID: 25091459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of temporal predictability on exogenous attentional modulation of feedforward processing in the striate cortex.
    Dassanayake TL; Michie PT; Fulham R
    Int J Psychophysiol; 2016 Jul; 105():9-16. PubMed ID: 27114044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal dynamics of visual attention measured with event-related potentials.
    Kashiwase Y; Matsumiya K; Kuriki I; Shioiri S
    PLoS One; 2013; 8(8):e70922. PubMed ID: 23976966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attentional modulation as a mechanism for enhanced facial emotion discrimination: The case of action video game players.
    Ciobanu A; Shibata K; Ali L; Rioja K; Andersen SK; Bavelier D; Bediou B
    Cogn Affect Behav Neurosci; 2023 Apr; 23(2):276-289. PubMed ID: 36670293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the temporal dynamics of sustained and transient spatial attention using steady-state visual evoked potentials.
    Zhang D; Hong B; Gao S; Röder B
    Exp Brain Res; 2017 May; 235(5):1575-1591. PubMed ID: 28258437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual object representations can be formed outside the focus of voluntary attention: evidence from event-related brain potentials.
    Müller D; Winkler I; Roeber U; Schaffer S; Czigler I; Schröger E
    J Cogn Neurosci; 2010 Jun; 22(6):1179-88. PubMed ID: 19445610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steady-state visual evoked potentials reveal enhanced neural responses to illusory surfaces during a concurrent visual attention task.
    Wittenhagen L; Mattingley JB
    Cortex; 2019 Aug; 117():217-227. PubMed ID: 30999213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of sustained, voluntary attention on amplitude and latency of steady-state visual evoked potential: a costs and benefits analysis.
    Di Russo F; Spinelli D
    Clin Neurophysiol; 2002 Nov; 113(11):1771-7. PubMed ID: 12417230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced change detection performance reveals improved strategy use in avid action video game players.
    Clark K; Fleck MS; Mitroff SR
    Acta Psychol (Amst); 2011 Jan; 136(1):67-72. PubMed ID: 21062660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Preliminary Study on Normalized Pattern-Reversal Peripheral Field SSVEPs as a Potential Objective Indicator of Useful Field of View Performance.
    Lin ST; Tey LK
    Invest Ophthalmol Vis Sci; 2016 Jun; 57(7):3248-56. PubMed ID: 27315540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.