These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 21248686)

  • 1. State-dependency effects on TMS: a look at motive phosphene behavior.
    Najib U; Horvath JC; Silvanto J; Pascual-Leone A
    J Vis Exp; 2010 Dec; (46):. PubMed ID: 21248686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. No correlation between moving phosphene and motor thresholds: a transcranial magnetic stimulation study.
    Antal A; Nitsche MA; Kincses TZ; Lampe C; Paulus W
    Neuroreport; 2004 Feb; 15(2):297-302. PubMed ID: 15076756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of cortical excitability by motor and phosphene thresholds in transcranial magnetic stimulation.
    Gerwig M; Kastrup O; Meyer BU; Niehaus L
    J Neurol Sci; 2003 Nov; 215(1-2):75-8. PubMed ID: 14568132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subjective characteristics of TMS-induced phosphenes originating in human V1 and V2.
    Salminen-Vaparanta N; Vanni S; Noreika V; Valiulis V; Móró L; Revonsuo A
    Cereb Cortex; 2014 Oct; 24(10):2751-60. PubMed ID: 23696280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of phosphene perception during saccadic eye movements: a transcranial magnetic stimulation study of the human visual cortex.
    Boulay C; Paus T
    Exp Brain Res; 2005 Nov; 167(2):297-300. PubMed ID: 16175365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcranial alternating current stimulation (tACS) modulates cortical excitability as assessed by TMS-induced phosphene thresholds.
    Kanai R; Paulus W; Walsh V
    Clin Neurophysiol; 2010 Sep; 121(9):1551-1554. PubMed ID: 20382069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual motion adaptation increases the susceptibility of area V5/MT to phosphene induction by transcranial magnetic stimulation.
    Guzman-Lopez J; Silvanto J; Seemungal BM
    Clin Neurophysiol; 2011 Oct; 122(10):1951-5. PubMed ID: 21511523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcranial magnetic stimulation in the visual system. II. Characterization of induced phosphenes and scotomas.
    Kammer T; Puls K; Erb M; Grodd W
    Exp Brain Res; 2005 Jan; 160(1):129-40. PubMed ID: 15368087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spreading photoparoxysmal EEG response is associated with an abnormal cortical excitability pattern.
    Siniatchkin M; Groppa S; Jerosch B; Muhle H; Kurth C; Shepherd AJ; Siebner H; Stephani U
    Brain; 2007 Jan; 130(Pt 1):78-87. PubMed ID: 17121743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphene thresholds evoked with single and double TMS pulses.
    Kammer T; Baumann LW
    Clin Neurophysiol; 2010 Mar; 121(3):376-9. PubMed ID: 20079689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of visual percepts evoked by noninvasive stimulation of the human posterior parietal cortex.
    Fried PJ; Elkin-Frankston S; Rushmore RJ; Hilgetag CC; Valero-Cabre A
    PLoS One; 2011; 6(11):e27204. PubMed ID: 22087266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testing the validity of the TMS state-dependency approach: targeting functionally distinct motion-selective neural populations in visual areas V1/V2 and V5/MT+.
    Silvanto J; Muggleton NG
    Neuroimage; 2008 May; 40(4):1841-8. PubMed ID: 18353682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in visual cortex excitability in blind subjects as demonstrated by transcranial magnetic stimulation.
    Gothe J; Brandt SA; Irlbacher K; Röricht S; Sabel BA; Meyer BU
    Brain; 2002 Mar; 125(Pt 3):479-90. PubMed ID: 11872606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the primary visual cortex using short-interval paired-pulse transcranial magnetic stimulation (TMS).
    Sparing R; Dambeck N; Stock K; Meister IG; Huetter D; Boroojerdi B
    Neurosci Lett; 2005 Jul; 382(3):312-6. PubMed ID: 15925110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of current direction on phosphene thresholds evoked by transcranial magnetic stimulation.
    Kammer T; Beck S; Erb M; Grodd W
    Clin Neurophysiol; 2001 Nov; 112(11):2015-21. PubMed ID: 11682339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retinal and visual cortex distance from transcranial magnetic stimulation of the vertex affects phosphene perception.
    Webster K; Ro T
    Exp Brain Res; 2017 Sep; 235(9):2857-2866. PubMed ID: 28676920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effect of visual motion adaption upon visual cortical excitability.
    Lubeck AJ; Van Ombergen A; Ahmad H; Bos JE; Wuyts FL; Bronstein AM; Arshad Q
    J Neurophysiol; 2017 Mar; 117(3):903-909. PubMed ID: 27903640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel approach for documenting phosphenes induced by transcranial magnetic stimulation.
    Elkin-Frankston S; Fried PJ; Pascual-Leone A; Rushmore RJ; Valero-Cabr A
    J Vis Exp; 2010 Apr; (38):. PubMed ID: 20360672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of moving phosphene thresholds by transcranial direct current stimulation of V1 in human.
    Antal A; Kincses TZ; Nitsche MA; Paulus W
    Neuropsychologia; 2003; 41(13):1802-7. PubMed ID: 14527543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precise oculocentric mapping of transcranial magnetic stimulation-evoked phosphenes.
    Silva AE; Tsang K; Hasan SJ; Thompson B
    Neuroreport; 2021 Aug; 32(11):913-917. PubMed ID: 34102648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.