BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 2124922)

  • 1. Slow light and dark adaptation of horizontal cells in the Xenopus retina: a role for endogenous dopamine.
    Witkovsky P; Shi XP
    Vis Neurosci; 1990 Oct; 5(4):405-13. PubMed ID: 2124922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoreceptor to horizontal cell synaptic transfer in the Xenopus retina: modulation by dopamine ligands and a circuit model for interactions of rod and cone inputs.
    Witkovsky P; Stone S; Tranchina D
    J Neurophysiol; 1989 Oct; 62(4):864-81. PubMed ID: 2530319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of cone horizontal cell activity in the teleost fish retina. II. Role of interplexiform cells and dopamine in regulating light responsiveness.
    Yang XL; Tornqvist K; Dowling JE
    J Neurosci; 1988 Jul; 8(7):2269-78. PubMed ID: 2470870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A circadian clock regulates rod and cone input to fish retinal cone horizontal cells.
    Wang Y; Mangel SC
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4655-60. PubMed ID: 8643459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response sensitivity and voltage gain of the rod- and cone-horizontal cell synapses in dark- and light-adapted tiger salamander retina.
    Yang XL; Wu SM
    J Neurophysiol; 1996 Dec; 76(6):3863-74. PubMed ID: 8985884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of cone horizontal cell activity in the teleost fish retina. I. Effects of prolonged darkness and background illumination on light responsiveness.
    Yang XL; Tornqvist K; Dowling JE
    J Neurosci; 1988 Jul; 8(7):2259-68. PubMed ID: 3249224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of cone horizontal cell activity in the teleost fish retina. III. Effects of prolonged darkness and dopamine on electrical coupling between horizontal cells.
    Tornqvist K; Yang XL; Dowling JE
    J Neurosci; 1988 Jul; 8(7):2279-88. PubMed ID: 3249225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dopamine and nitric oxide control both flickering and steady-light-induced cone contraction and horizontal cell spinule formation in the teleost (carp) retina: serial interaction of dopamine and nitric oxide.
    Haamedi SN; Djamgoz MB
    J Comp Neurol; 2002 Jul; 449(2):120-8. PubMed ID: 12115683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of prolonged darkness on light responsiveness and spectral sensitivity of cone horizontal cells in carp retina in vivo.
    Yang XL; Fan TX; Shen W
    J Neurosci; 1994 Jan; 14(1):326-34. PubMed ID: 8283240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic inputs from rods and cones to horizontal cells in the tiger salamander retina.
    Yang XL; Wu SM
    Sci China B; 1990 Aug; 33(8):946-54. PubMed ID: 2242218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GABA and glycine modify the balance of rod and cone inputs to horizontal cells in the Xenopus retina.
    Witkovsky P; Stone S
    Exp Biol; 1987; 47(1):13-22. PubMed ID: 3666095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interplexiform-horizontal cell system of the fish retina: effects of dopamine, light stimulation and time in the dark.
    Mangel SC; Dowling JE
    Proc R Soc Lond B Biol Sci; 1987 Jun; 231(1262):91-121. PubMed ID: 2888119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dopaminergic regulation of cone retinomotor movement in isolated teleost retinas: I. Induction of cone contraction is mediated by D2 receptors.
    Dearry A; Burnside B
    J Neurochem; 1986 Apr; 46(4):1006-21. PubMed ID: 2869104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Input-output relations of the feedback synapse between horizontal cells and cones in the tiger salamander retina.
    Wu SM
    J Neurophysiol; 1991 May; 65(5):1197-206. PubMed ID: 1651374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular recording from identified photoreceptors and horizontal cells of the Xenopus retina.
    Hassin G; Witkovsky P
    Vision Res; 1983; 23(10):921-31. PubMed ID: 6649438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rod-dependent intracellular responses to light recorded from the pigment epithelium of the cat retina.
    Schmidt R; Steinberg RH
    J Physiol; 1971 Aug; 217(1):71-91. PubMed ID: 5571953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic transmission from rods to horizontal cells in dark-adapted tiger salamander retina.
    Wu SM
    Vision Res; 1988; 28(1):1-8. PubMed ID: 2842959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nerve growth factor induces light adaptive cellular and synaptic plasticity in the outer retina of fish.
    Haamedi SN; Karten HJ; Djamgoz MB
    J Comp Neurol; 2001 Mar; 431(4):397-404. PubMed ID: 11223810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dopamine induces light-adaptive retinomotor movements in bullfrog cones via D2 receptors and in retinal pigment epithelium via D1 receptors.
    Dearry A; Edelman JL; Miller S; Burnside B
    J Neurochem; 1990 Apr; 54(4):1367-78. PubMed ID: 2156019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dopamine mediates circadian clock regulation of rod and cone input to fish retinal horizontal cells.
    Ribelayga C; Wang Y; Mangel SC
    J Physiol; 2002 Nov; 544(3):801-16. PubMed ID: 12411525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.