These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 2124922)

  • 21. Relative contribution of rod and cone inputs to bipolar cells and ganglion cells in the tiger salamander retina.
    Hensley SH; Yang XL; Wu SM
    J Neurophysiol; 1993 Jun; 69(6):2086-98. PubMed ID: 8350133
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A role for endogenous dopamine in circadian regulation of retinal cone movement.
    McCormack CA; Burnside B
    Exp Eye Res; 1992 Sep; 55(3):511-20. PubMed ID: 1426081
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of dopamine depletion on light-evoked and circadian retinomotor movements in the teleost retina.
    Douglas RH; Wagner HJ; Zaunreiter M; Behrens UD; Djamgoz MB
    Vis Neurosci; 1992; 9(3-4):335-43. PubMed ID: 1390391
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Horizontal cell sensitivity in the cat retina during prolonged dark adaptation.
    Lankheet MJ; Rowe MH; van Wezel RJ; van de Grind WA
    Vis Neurosci; 1996; 13(5):885-96. PubMed ID: 8903031
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gap junction particle density of horizontal cells in goldfish retinas lesioned with 6-OHDA.
    Baldridge WH; Ball AK; Miller RG
    J Comp Neurol; 1989 Sep; 287(2):238-46. PubMed ID: 2507595
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dopamine modifies the balance of rod and cone inputs to horizontal cells of the Xenopus retina.
    Witkovsky P; Stone S; Besharse JC
    Brain Res; 1988 May; 449(1-2):332-6. PubMed ID: 3293703
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dopamine and plasticity of horizontal cell function in the teleost retina: regulation of a spectral mechanism through D1-receptors.
    Kirsch M; Wagner HJ; Djamgoz MB
    Vision Res; 1991; 31(3):401-12. PubMed ID: 1843751
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Independent influences of rod adaptation on cone-mediated responses to light onset and offset in distal retinal neurons.
    Frumkes TE; Wu SM
    J Neurophysiol; 1990 Sep; 64(3):1043-54. PubMed ID: 2230916
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of submicromolar concentrations of dopamine on photoreceptor to horizontal cell communication.
    Krizaj D; Witkovsky P
    Brain Res; 1993 Nov; 627(1):122-8. PubMed ID: 8293292
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Response sensitivity and voltage gain of the rod- and cone-bipolar cell synapses in dark-adapted tiger salamander retina.
    Yang XL; Wu SM
    J Neurophysiol; 1997 Nov; 78(5):2662-73. PubMed ID: 9356416
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rod and cone inputs to bipolar and horizontal cells of the Xenopus retina.
    Witkovsky P; Stone S
    Vision Res; 1983; 23(11):1251-8. PubMed ID: 6659374
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dopaminergic mechanisms underlying the reduction of electrical coupling between horizontal cells of the turtle retina induced by d-amphetamine, bicuculline, and veratridine.
    Piccolino M; Witkovsky P; Trimarchi C
    J Neurosci; 1987 Aug; 7(8):2273-84. PubMed ID: 3112324
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synaptic circuitry mediating light-evoked signals in dark-adapted mouse retina.
    Wu SM; Gao F; Pang JJ
    Vision Res; 2004 Dec; 44(28):3277-88. PubMed ID: 15535995
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temporal and spatial properties of suppressive rod-cone interaction.
    Horiguchi M; Eysteinsson T; Arden GB
    Invest Ophthalmol Vis Sci; 1991 Mar; 32(3):575-81. PubMed ID: 2001932
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Background contrast modulates kinetics and lateral spread of responses to superimposed stimuli in outer retina.
    Reifsnider ES; Tranchina D
    Vis Neurosci; 1995; 12(6):1105-26. PubMed ID: 8962830
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tracer coupling between fish rod horizontal cells: modulation by light and dopamine but not the retinal circadian clock.
    Ribelayga C; Mangel SC
    Vis Neurosci; 2007; 24(3):333-44. PubMed ID: 17640444
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Threshold and chromatic sensitivity changes in fish cone horizontal cells following prolonged darkness.
    Mangel SC; Baldridge WH; Weiler R; Dowling JE
    Brain Res; 1994 Oct; 659(1-2):55-61. PubMed ID: 7820681
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Center-surround organization of Xenopus horizontal cells and its modification by gamma-aminobutyric acid and strontium.
    Stone S; Witkovsky P
    Exp Biol; 1987; 47(1):1-12. PubMed ID: 3666094
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Circadian regulation of retinomotor movements. I. Interaction of melatonin and dopamine in the control of cone length.
    Pierce ME; Besharse JC
    J Gen Physiol; 1985 Nov; 86(5):671-89. PubMed ID: 2999294
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The circadian component of spinule dynamics in teleost retinal horizontal cells is dependent on the dopaminergic system.
    Wagner HJ; Behrens UD; Zaunreiter M; Douglas RH
    Vis Neurosci; 1992; 9(3-4):345-51. PubMed ID: 1390392
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.