These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 21249345)
1. Use of polyethylenimine-modified magnetic nanoparticles for highly specific enrichment of phosphopeptides for mass spectrometric analysis. Chen CT; Wang LY; Ho YP Anal Bioanal Chem; 2011 Mar; 399(8):2795-806. PubMed ID: 21249345 [TBL] [Abstract][Full Text] [Related]
2. Rapid enrichment of phosphopeptides from tryptic digests of proteins using iron oxide nanocomposites of magnetic particles coated with zirconia as the concentrating probes. Lo CY; Chen WY; Chen CT; Chen YC J Proteome Res; 2007 Feb; 6(2):887-93. PubMed ID: 17269746 [TBL] [Abstract][Full Text] [Related]
3. CoFe2 O4 -ZnO nanoparticles for rapid microwave-assisted tryptic digestion of phosphoprotein and phosphopeptide analysis by matrix-assisted laser desorption/ionization mass spectrometry. Nawaz MI; Hasan N; Wu HF Rapid Commun Mass Spectrom; 2016 Jul; 30(13):1443-53. PubMed ID: 27321831 [TBL] [Abstract][Full Text] [Related]
4. Zirconium arsenate-modified silica nanoparticles for specific capture of phosphopeptides and direct analysis by matrix-assisted laser desorption/ionization mass spectrometry. Zhao PX; Guo XF; Wang H; Qi CB; Xia HS; Zhang HS Anal Bioanal Chem; 2012 Jan; 402(3):1041-56. PubMed ID: 22105300 [TBL] [Abstract][Full Text] [Related]
5. Specific capture of phosphopeptides on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry targets modified by magnetic affinity nanoparticles. Tan F; Zhang Y; Wang J; Wei J; Qin P; Cai Y; Qian X Rapid Commun Mass Spectrom; 2007; 21(14):2407-14. PubMed ID: 17582624 [TBL] [Abstract][Full Text] [Related]
6. Enrichment of phosphopeptides by Fe3+-immobilized mesoporous nanoparticles of MCM-41 for MALDI and nano-LC-MS/MS analysis. Pan C; Ye M; Liu Y; Feng S; Jiang X; Han G; Zhu J; Zou H J Proteome Res; 2006 Nov; 5(11):3114-24. PubMed ID: 17081063 [TBL] [Abstract][Full Text] [Related]
7. Amine-functionalized sol-gel-based lab-in-a-pipet-tip approach for the fast enrichment and specific purification of phosphopeptides in MALDI-MS applications. Atakay M; Celikbıçak O; Salih B Anal Chem; 2012 Mar; 84(6):2713-20. PubMed ID: 22393919 [TBL] [Abstract][Full Text] [Related]
8. Specific enrichment and direct detection of phosphopeptides on insoluble transition metal oxide particles in matrix-assisted laser desorption/ionization mass spectrometry applications. Celikbiçak O; Kaynar G; Atakay M; Güler U; Kayili HM; Salih B Eur J Mass Spectrom (Chichester); 2013; 19(3):151-62. PubMed ID: 24308196 [TBL] [Abstract][Full Text] [Related]
10. Enrichment of phosphopeptides using bare magnetic particles. Lee A; Yang HJ; Lim ES; Kim J; Kim Y Rapid Commun Mass Spectrom; 2008 Aug; 22(16):2561-4. PubMed ID: 18655002 [TBL] [Abstract][Full Text] [Related]
11. Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis. Li Y; Xu X; Qi D; Deng C; Yang P; Zhang X J Proteome Res; 2008 Jun; 7(6):2526-38. PubMed ID: 18473453 [TBL] [Abstract][Full Text] [Related]
12. EJMS protocol: systematic studies on TiO2-based phosphopeptide enrichment procedures upon in-solution and in-gel digestions of proteins. Are there readily applicable protocols suitable for matrix-assisted laser desorption/ionization mass spectrometry-based phosphopeptide stability estimations? Eickner T; Mikkat S; Lorenz P; Sklorz M; Zimmermann R; Thiesen HJ; Glocker MO Eur J Mass Spectrom (Chichester); 2011; 17(5):507-23. PubMed ID: 22173543 [TBL] [Abstract][Full Text] [Related]
13. Fe3O4@Al2O3 magnetic core-shell microspheres for rapid and highly specific capture of phosphopeptides with mass spectrometry analysis. Li Y; Liu Y; Tang J; Lin H; Yao N; Shen X; Deng C; Yang P; Zhang X J Chromatogr A; 2007 Nov; 1172(1):57-71. PubMed ID: 17936290 [TBL] [Abstract][Full Text] [Related]
14. Highly specific enrichment of phosphopeptides by zirconium dioxide nanoparticles for phosphoproteome analysis. Zhou H; Tian R; Ye M; Xu S; Feng S; Pan C; Jiang X; Li X; Zou H Electrophoresis; 2007 Jul; 28(13):2201-15. PubMed ID: 17539039 [TBL] [Abstract][Full Text] [Related]
15. Iron oxide/tantalum oxide core-shell magnetic nanoparticle-based microwave-assisted extraction for phosphopeptide enrichment from complex samples for MALDI MS analysis. Lin HY; Chen WY; Chen YC Anal Bioanal Chem; 2009 Aug; 394(8):2129-36. PubMed ID: 19554316 [TBL] [Abstract][Full Text] [Related]
16. Gadolinium oxide: Exclusive selectivity and sensitivity in the enrichment of phosphorylated biomolecules. Jabeen F; Najam-Ul-Haq M; Ashiq MN; Rainer M; Huck CW; Bonn GK J Sep Sci; 2016 Nov; 39(21):4175-4182. PubMed ID: 27592854 [TBL] [Abstract][Full Text] [Related]
17. Zirconium phosphonate-modified porous silicon for highly specific capture of phosphopeptides and MALDI-TOF MS analysis. Zhou H; Xu S; Ye M; Feng S; Pan C; Jiang X; Li X; Han G; Fu Y; Zou H J Proteome Res; 2006 Sep; 5(9):2431-7. PubMed ID: 16944956 [TBL] [Abstract][Full Text] [Related]
18. Highly selective and sensitive enrichment of phosphopeptides via NiO nanoparticles using a microwave-assisted centrifugation on-particle ionization/enrichment approach in MALDI-MS. Hasan N; Wu HF Anal Bioanal Chem; 2011 Jul; 400(10):3451-62. PubMed ID: 21533801 [TBL] [Abstract][Full Text] [Related]
19. Optimized protocol for on-target phosphopeptide enrichment prior to matrix-assisted laser desorption-ionization mass spectrometry using mesoporous titanium dioxide. Eriksson A; Bergquist J; Edwards K; Hagfeldt A; Malmström D; Agmo Hernández V Anal Chem; 2010 Jun; 82(11):4577-83. PubMed ID: 20443553 [TBL] [Abstract][Full Text] [Related]
20. Selective enrichment of phosphopeptides by titania nanoparticles coated magnetic carbon nanotubes. Yan Y; Zheng Z; Deng C; Zhang X; Yang P Talanta; 2014 Jan; 118():14-20. PubMed ID: 24274265 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]