These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
567 related articles for article (PubMed ID: 21249423)
1. Angiogenesis and immunity: a bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy. Tartour E; Pere H; Maillere B; Terme M; Merillon N; Taieb J; Sandoval F; Quintin-Colonna F; Lacerda K; Karadimou A; Badoual C; Tedgui A; Fridman WH; Oudard S Cancer Metastasis Rev; 2011 Mar; 30(1):83-95. PubMed ID: 21249423 [TBL] [Abstract][Full Text] [Related]
2. Modulation of immunity by antiangiogenic molecules in cancer. Terme M; Colussi O; Marcheteau E; Tanchot C; Tartour E; Taieb J Clin Dev Immunol; 2012; 2012():492920. PubMed ID: 23320019 [TBL] [Abstract][Full Text] [Related]
3. Antiangiogenic therapy of established tumors in human skin/severe combined immunodeficiency mouse chimeras by anti-endoglin (CD105) monoclonal antibodies, and synergy between anti-endoglin antibody and cyclophosphamide. Takahashi N; Haba A; Matsuno F; Seon BK Cancer Res; 2001 Nov; 61(21):7846-54. PubMed ID: 11691802 [TBL] [Abstract][Full Text] [Related]
4. Cancer immunotherapy of targeting angiogenesis. Hou J; Tian L; Wei Y Cell Mol Immunol; 2004 Jun; 1(3):161-6. PubMed ID: 16219162 [TBL] [Abstract][Full Text] [Related]
5. Vascular Targeting to Increase the Efficiency of Immune Checkpoint Blockade in Cancer. Georganaki M; van Hooren L; Dimberg A Front Immunol; 2018; 9():3081. PubMed ID: 30627131 [TBL] [Abstract][Full Text] [Related]
6. Optimized antiangiogenic reprogramming of the tumor microenvironment potentiates CD40 immunotherapy. Kashyap AS; Schmittnaegel M; Rigamonti N; Pais-Ferreira D; Mueller P; Buchi M; Ooi CH; Kreuzaler M; Hirschmann P; Guichard A; Rieder N; Bill R; Herting F; Kienast Y; Dirnhofer S; Klein C; Hoves S; Ries CH; Corse E; De Palma M; Zippelius A Proc Natl Acad Sci U S A; 2020 Jan; 117(1):541-551. PubMed ID: 31889004 [TBL] [Abstract][Full Text] [Related]
7. Targeting tumor micro-environment for design and development of novel anti-angiogenic agents arresting tumor growth. Gacche RN; Meshram RJ Prog Biophys Mol Biol; 2013 Nov; 113(2):333-54. PubMed ID: 24139944 [TBL] [Abstract][Full Text] [Related]
8. Nanotherapeutic approaches targeting angiogenesis and immune dysfunction in tumor microenvironment. Hameed S; Bhattarai P; Dai Z Sci China Life Sci; 2018 Apr; 61(4):380-391. PubMed ID: 29607461 [TBL] [Abstract][Full Text] [Related]
9. Antiangiogenic treatment enhances photodynamic therapy responsiveness in a mouse mammary carcinoma. Ferrario A; von Tiehl KF; Rucker N; Schwarz MA; Gill PS; Gomer CJ Cancer Res; 2000 Aug; 60(15):4066-9. PubMed ID: 10945611 [TBL] [Abstract][Full Text] [Related]
10. IL-27 in tumor immunity and immunotherapy. Murugaiyan G; Saha B Trends Mol Med; 2013 Feb; 19(2):108-16. PubMed ID: 23306374 [TBL] [Abstract][Full Text] [Related]
11. Synergies of Targeting Angiogenesis and Immune Checkpoints in Cancer: From Mechanism to Clinical Applications. Zhou S; Zhang H Anticancer Agents Med Chem; 2020; 20(7):768-776. PubMed ID: 32031076 [TBL] [Abstract][Full Text] [Related]
12. Anti-FGF2 approaches as a strategy to compensate resistance to anti-VEGF therapy: long-pentraxin 3 as a novel antiangiogenic FGF2-antagonist. Alessi P; Leali D; Camozzi M; Cantelmo A; Albini A; Presta M Eur Cytokine Netw; 2009 Dec; 20(4):225-34. PubMed ID: 20167562 [TBL] [Abstract][Full Text] [Related]
13. Anti-angiogenesis: Opening a new window for immunotherapy. Guo F; Cui J Life Sci; 2020 Oct; 258():118163. PubMed ID: 32738363 [TBL] [Abstract][Full Text] [Related]
14. Tumor angiogenesis and accessibility: role of vascular endothelial growth factor. Jain RK Semin Oncol; 2002 Dec; 29(6 Suppl 16):3-9. PubMed ID: 12516032 [TBL] [Abstract][Full Text] [Related]
15. Antiangiogenic therapy improves the antitumor effect of adoptive cell immunotherapy by normalizing tumor vasculature. Shi S; Chen L; Huang G Med Oncol; 2013 Dec; 30(4):698. PubMed ID: 23982676 [TBL] [Abstract][Full Text] [Related]
16. The Angiopoietin-2 and TIE Pathway as a Therapeutic Target for Enhancing Antiangiogenic Therapy and Immunotherapy in Patients with Advanced Cancer. Leong A; Kim M Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33217955 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Ciardiello F; Caputo R; Bianco R; Damiano V; Fontanini G; Cuccato S; De Placido S; Bianco AR; Tortora G Clin Cancer Res; 2001 May; 7(5):1459-65. PubMed ID: 11350918 [TBL] [Abstract][Full Text] [Related]
18. The combination of antiangiogenic therapy with other modalities. O'Reilly MS Cancer J; 2002; 8 Suppl 1():S89-99. PubMed ID: 12075706 [TBL] [Abstract][Full Text] [Related]
19. Vascular normalization as an emerging strategy to enhance cancer immunotherapy. Huang Y; Goel S; Duda DG; Fukumura D; Jain RK Cancer Res; 2013 May; 73(10):2943-8. PubMed ID: 23440426 [TBL] [Abstract][Full Text] [Related]
20. Activation of tumor-associated macrophages by the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid induces an effective CD8+ T-cell-mediated antitumor immune response in murine models of lung cancer and mesothelioma. Jassar AS; Suzuki E; Kapoor V; Sun J; Silverberg MB; Cheung L; Burdick MD; Strieter RM; Ching LM; Kaiser LR; Albelda SM Cancer Res; 2005 Dec; 65(24):11752-61. PubMed ID: 16357188 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]