These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 21249436)
1. Disruption of mitochondrial homeostasis in organic acidurias: insights from human and animal studies. Wajner M; Goodman SI J Bioenerg Biomembr; 2011 Feb; 43(1):31-8. PubMed ID: 21249436 [TBL] [Abstract][Full Text] [Related]
2. Toxic synergism between quinolinic acid and organic acids accumulating in glutaric acidemia type I and in disorders of propionate metabolism in rat brain synaptosomes: Relevance for metabolic acidemias. Colín-González AL; Paz-Loyola AL; Serratos I; Seminotti B; Ribeiro CA; Leipnitz G; Souza DO; Wajner M; Santamaría A Neuroscience; 2015 Nov; 308():64-74. PubMed ID: 26343296 [TBL] [Abstract][Full Text] [Related]
3. The role of oxidative damage in the neuropathology of organic acidurias: insights from animal studies. Wajner M; Latini A; Wyse AT; Dutra-Filho CS J Inherit Metab Dis; 2004; 27(4):427-48. PubMed ID: 15303000 [TBL] [Abstract][Full Text] [Related]
4. Disruption of mitochondrial functions and oxidative stress contribute to neurologic dysfunction in organic acidurias. Wajner M; Vargas CR; Amaral AU Arch Biochem Biophys; 2020 Dec; 696():108646. PubMed ID: 33098870 [TBL] [Abstract][Full Text] [Related]
6. Selective Screening of Fatty Acids Oxidation Defects and Organic Acidemias by Liquid Chromatography/tandem Mass Spectrometry Acylcarnitine Analysis in Brazilian Patients. Vargas CR; Ribas GS; da Silva JM; Sitta A; Deon M; de Moura Coelho D; Wajner M Arch Med Res; 2018 Apr; 49(3):205-212. PubMed ID: 30119976 [TBL] [Abstract][Full Text] [Related]
7. The effect of WIN 55,212-2 suggests a cannabinoid-sensitive component in the early toxicity induced by organic acids accumulating in glutaric acidemia type I and in related disorders of propionate metabolism in rat brain synaptosomes. Colín-González AL; Paz-Loyola AL; Serratos IN; Seminotti B; Ribeiro CA; Leipnitz G; Souza DO; Wajner M; Santamaría A Neuroscience; 2015 Dec; 310():578-88. PubMed ID: 26431622 [TBL] [Abstract][Full Text] [Related]
8. Pathogenesis of brain damage in glutaric acidemia type I: Lessons from the genetic mice model. Wajner M; Amaral AU; Leipnitz G; Seminotti B Int J Dev Neurosci; 2019 Nov; 78():215-221. PubMed ID: 31125684 [TBL] [Abstract][Full Text] [Related]
9. Secondary mitochondrial dysfunction in propionic aciduria: a pathogenic role for endogenous mitochondrial toxins. Schwab MA; Sauer SW; Okun JG; Nijtmans LG; Rodenburg RJ; van den Heuvel LP; Dröse S; Brandt U; Hoffmann GF; Ter Laak H; Kölker S; Smeitink JA Biochem J; 2006 Aug; 398(1):107-12. PubMed ID: 16686602 [TBL] [Abstract][Full Text] [Related]
10. Mitochondrial dysfunction in fatty acid oxidation disorders: insights from human and animal studies. Wajner M; Amaral AU Biosci Rep; 2015 Nov; 36(1):e00281. PubMed ID: 26589966 [TBL] [Abstract][Full Text] [Related]
11. Cerebral White Matter Alterations Associated With Oligodendrocyte Vulnerability in Organic Acidurias: Insights in Glutaric Aciduria Type I. Isasi E; Wajner M; Duarte JA; Olivera-Bravo S Neurotox Res; 2024 Jul; 42(4):33. PubMed ID: 38963434 [TBL] [Abstract][Full Text] [Related]
12. Pathophysiology of propionic and methylmalonic acidemias. Part 1: Complications. Haijes HA; Jans JJM; Tas SY; Verhoeven-Duif NM; van Hasselt PM J Inherit Metab Dis; 2019 Sep; 42(5):730-744. PubMed ID: 31119747 [TBL] [Abstract][Full Text] [Related]
13. Disturbance of redox homeostasis as a contributing underlying pathomechanism of brain and liver alterations in 3-hydroxy-3-methylglutaryl-CoA lyase deficiency. Leipnitz G; Vargas CR; Wajner M J Inherit Metab Dis; 2015 Nov; 38(6):1021-8. PubMed ID: 26041581 [TBL] [Abstract][Full Text] [Related]
14. Comparative frequency and severity of hypoglycemia in selected organic acidemias, branched chain amino acidemia, and disorders of fructose metabolism. Worthen HG; al Ashwal A; Ozand PT; Garawi S; Rahbeeni Z; al Odaib A; Subramanyam SB; Rashed M Brain Dev; 1994 Nov; 16 Suppl():81-5. PubMed ID: 7726385 [TBL] [Abstract][Full Text] [Related]
15. Molecular and biochemical investigations of inborn errors of metabolism-altered redox homeostasis in branched-chain amino acid disorders, organic acidurias, and homocystinuria. Ray SK; Mukherjee S Free Radic Res; 2021 Jun; 55(6):627-640. PubMed ID: 33504220 [TBL] [Abstract][Full Text] [Related]
16. Inherited disorders affecting mitochondrial function are associated with glutathione deficiency and hypocitrullinemia. Atkuri KR; Cowan TM; Kwan T; Ng A; Herzenberg LA; Herzenberg LA; Enns GM Proc Natl Acad Sci U S A; 2009 Mar; 106(10):3941-5. PubMed ID: 19223582 [TBL] [Abstract][Full Text] [Related]
17. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. Sas K; Robotka H; Toldi J; Vécsei L J Neurol Sci; 2007 Jun; 257(1-2):221-39. PubMed ID: 17462670 [TBL] [Abstract][Full Text] [Related]
18. Pathophysiology of propionic and methylmalonic acidemias. Part 2: Treatment strategies. Haijes HA; van Hasselt PM; Jans JJM; Verhoeven-Duif NM J Inherit Metab Dis; 2019 Sep; 42(5):745-761. PubMed ID: 31119742 [TBL] [Abstract][Full Text] [Related]
19. Movement Disorders in Treatable Inborn Errors of Metabolism. Ebrahimi-Fakhari D; Van Karnebeek C; Münchau A Mov Disord; 2019 May; 34(5):598-613. PubMed ID: 30557456 [TBL] [Abstract][Full Text] [Related]
20. Higher Vulnerability of Menadione-Exposed Cortical Astrocytes of Glutaryl-CoA Dehydrogenase Deficient Mice to Oxidative Stress, Mitochondrial Dysfunction, and Cell Death: Implications for the Neurodegeneration in Glutaric Aciduria Type I. Rodrigues MDN; Seminotti B; Zanatta Â; de Mello Gonçalves A; Bellaver B; Amaral AU; Quincozes-Santos A; Goodman SI; Woontner M; Souza DO; Wajner M Mol Neurobiol; 2017 Aug; 54(6):4795-4805. PubMed ID: 27510504 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]