BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 21249493)

  • 1. Simulating calcium salt precipitation in the nephron using chemical speciation.
    Rodgers AL; Allie-Hamdulay S; Jackson G; Tiselius HG
    Urol Res; 2011 Aug; 39(4):245-51. PubMed ID: 21249493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the role of calcium phosphate in the process of calcium oxalate crystal formation.
    Tiselius HG; Lindbäck B; Fornander AM; Nilsson MA
    Urol Res; 2009 Aug; 37(4):181-92. PubMed ID: 19444436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hypothesis of calcium stone formation: an interpretation of stone research during the past decades.
    Tiselius HG
    Urol Res; 2011 Aug; 39(4):231-43. PubMed ID: 21246193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Malic acid supplementation increases urinary citrate excretion and urinary pH: implications for the potential treatment of calcium oxalate stone disease.
    Rodgers AL; Webber D; de Charmoy R; Jackson GE; Ravenscroft N
    J Endourol; 2014 Feb; 28(2):229-36. PubMed ID: 24059642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is calcium oxalate nucleation in postprandial urine of males with idiopathic recurrent calcium urolithiasis related to calcium phosphate nucleation and the intensity of stone formation? Studies allowing insight into a possible role of urinary free citrate and protein.
    Schwille PO; Schmiedl A; Manoharan M
    Clin Chem Lab Med; 2004 Mar; 42(3):283-93. PubMed ID: 15080561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential role of fluctuations in the composition of renal tubular fluid through the nephron in the initiation of Randall's plugs and calcium oxalate crystalluria in a computer model of renal function.
    Robertson WG
    Urolithiasis; 2015 Jan; 43 Suppl 1():93-107. PubMed ID: 25407799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Risk factors for crystallization in the nephron: the role of renal development.
    Kok DJ; Schell-Feith EA
    J Am Soc Nephrol; 1999 Nov; 10 Suppl 14():S364-70. PubMed ID: 10541265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kidney models of calcium oxalate stone formation.
    Robertson WG
    Nephron Physiol; 2004; 98(2):p21-30. PubMed ID: 15499211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the risk of kidney stone formation in the nephron by 'reverse engineering'.
    Hill MG; Königsberger E; May PM
    Urolithiasis; 2020 Jun; 48(3):201-208. PubMed ID: 31773216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of sodium-potassium citrate on the diurnal variations in urinary calcium oxalate and calcium phosphate saturation levels in normal individuals.
    Ogawa Y
    Br J Urol; 1994 Feb; 73(2):136-41. PubMed ID: 8131014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of seed crystals of hydroxyapatite and brushite on the crystallization of calcium oxalate in undiluted human urine in vitro: implications for urinary stone pathogenesis.
    Grover PK; Kim DS; Ryall RL
    Mol Med; 2002 Apr; 8(4):200-9. PubMed ID: 12149569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallization and stone formation inside the nephron.
    Kok DJ
    Scanning Microsc; 1996; 10(2):471-84; discussion 484-6. PubMed ID: 9813625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification of estimation of the urinary ion-activity products of calcium oxalate and calcium phosphate.
    Ogawa Y
    Hinyokika Kiyo; 1993 May; 39(5):407-11. PubMed ID: 8322621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elucidation of factors determining formation of calcium phosphate stones.
    Pak CY; Adams-Huet B
    J Urol; 2004 Dec; 172(6 Pt 1):2267-70. PubMed ID: 15538246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Phytate (InsP6) and Other Inositol-Phosphates (InsP5, InsP4, InsP3, InsP2) on Crystallization of Calcium Oxalate, Brushite, and Hydroxyapatite.
    Calvó P; Costa-Bauza A; Grases F
    Biomolecules; 2023 Jun; 13(7):. PubMed ID: 37509097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium oxalate precipitation in a flow system: an attempt to simulate the early stages of stone formation in the renal tubules.
    Azoury R; Garside J; Robertson WG
    J Urol; 1986 Jul; 136(1):150-3. PubMed ID: 3712603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Idiopathic recurrent calcium urolithiasis (IRCU): variation of fasting urinary protein is a window to pathophysiology or simple consequence of renal stones in situ? A tripartite study in male patients providing insight into oxidative metabolism as possible driving force towards alteration of urine composition, calcium salt crystallization and stone formation.
    Schwille PO; Schmiedl A; Wipplinger J
    Eur J Med Res; 2009 Sep; 14(9):378-92. PubMed ID: 19748857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystallisation properties in stone forming and normal subjects' urine diluted using a standardised procedure to match the composition of urine in the distal part of the distal tubule and the middle part of the collecting duct.
    Tiselius HG; Hallin A; Lindbäck B
    Urol Res; 2001 Apr; 29(2):75-82. PubMed ID: 11396732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uromucoids and urinary stone formation.
    Hallson PC; Rose GA
    Lancet; 1979 May; 1(8124):1000-2. PubMed ID: 86719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallization during volume reduction of solutions with a composition corresponding to that in the collecting duct: the influence of hydroxyapatite seed crystals and urinary macromolecules.
    Højgaard I; Fornander AM; Nilsson MA; Tiselius HG
    Urol Res; 1999 Dec; 27(6):417-25. PubMed ID: 10651129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.