BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 21250721)

  • 1. A strategy for the late-stage divergent syntheses of scyphostatin analogues.
    Cha JY; Burnett GL; Huang Y; Davidson JB; Pettus TR
    J Org Chem; 2011 Mar; 76(5):1361-71. PubMed ID: 21250721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short and efficient route to the fully functionalized polar core of scyphostatin.
    Pitsinos EN; Cruz A
    Org Lett; 2005 May; 7(11):2245-8. PubMed ID: 15901180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of Scyphostatin Analogues through Hypervalent Iodine-Mediated Phenol Dearomatization.
    El Assal M; Peixoto PA; Coffinier R; Garnier T; Deffieux D; Miqueu K; Sotiropoulos JM; Pouységu L; Quideau S
    J Org Chem; 2017 Nov; 82(22):11816-11828. PubMed ID: 28991470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A furan Diels-Alder cycloaddition approach to scyphostatin analogues.
    Fraser CJ; Howell GP; Harrity JP
    Org Biomol Chem; 2012 Dec; 10(45):9058-66. PubMed ID: 23086598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis (and alternative proof of configuration) of the scyphostatin C(1')-C(20') trienoyl fragment.
    Hoye TR; Tennakoon MA
    Org Lett; 2000 May; 2(10):1481-3. PubMed ID: 10814478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic kinetic resolution during a vinylogous Payne rearrangement: a concise synthesis of the polar pharmacophoric subunit of (+)-scyphostatin.
    Hoye TR; Jeffrey CS; Nelson DP
    Org Lett; 2010 Jan; 12(1):52-5. PubMed ID: 19968321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stereoselective total synthesis of (+)-Scyphostatin via a pi-facially selective Diels-Alder reaction.
    Takagi R; Miyanaga W; Tojo K; Tsuyumine S; Ohkata K
    J Org Chem; 2007 May; 72(11):4117-25. PubMed ID: 17477576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and evaluation of three novel scyphostatin analogues as neutral sphingomyelinase inhibitors.
    Pitsinos EN; Wascholowski V; Karaliota S; Rigou C; Couladouros EA; Giannis A
    Chembiochem; 2003 Nov; 4(11):1223-5. PubMed ID: 14613115
    [No Abstract]   [Full Text] [Related]  

  • 9. Total synthesis of (+)-scyphostatin featuring an enantioselective and highly efficient route to the side-chain via Zr-catalyzed asymmetric carboalumination of alkenes (ZACA).
    Pitsinos E; Athinaios N; Xu Z; Wang G; Negishi E
    Chem Commun (Camb); 2010 Apr; 46(13):2200-2. PubMed ID: 20234905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies toward the total synthesis of scyphostatin: first entry to the highly functionalized cyclohexenone segment.
    Izuhara T; Katoh T
    Org Lett; 2001 May; 3(11):1653-6. PubMed ID: 11405678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient and general method for the synthesis of alpha,omega-difunctional reduced polypropionates by Zr-catalyzed asymmetric carboalumination: synthesis of the scyphostatin side chain.
    Tan Z; Negishi E
    Angew Chem Int Ed Engl; 2004 May; 43(22):2911-4. PubMed ID: 15170301
    [No Abstract]   [Full Text] [Related]  

  • 12. Concise approach to the carbocyclic core of the naturally occurring sphingomyelinase inhibitor scyphostatin.
    Mehta G; Modugu NR
    J Org Chem; 2013 Apr; 78(7):3367-73. PubMed ID: 23442124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concise asymmetric total synthesis of scyphostatin, a potent inhibitor of neutral sphingomyelinase.
    Fujioka H; Sawama Y; Kotoku N; Ohnaka T; Okitsu T; Murata N; Kubo O; Li R; Kita Y
    Chemistry; 2007; 13(36):10225-38. PubMed ID: 17907134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereoselective reactions of a (-)-quinic acid-derived enone: application to the synthesis of the core of scyphostatin.
    Murray LM; O'Brien P; Taylor RJ
    Org Lett; 2003 May; 5(11):1943-6. PubMed ID: 12762692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Total synthesis of (+)-scyphostatin, a potent and specific inhibitor of neutral sphingomyelinase.
    Inoue M; Yokota W; Murugesh MG; Izuhara T; Katoh T
    Angew Chem Int Ed Engl; 2004 Aug; 43(32):4207-9. PubMed ID: 15307088
    [No Abstract]   [Full Text] [Related]  

  • 16. A short and efficient route to novel scyphostatin analogues.
    Runcie KA; Taylor RJ
    Org Lett; 2001 Oct; 3(21):3237-9. PubMed ID: 11594803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and biochemical investigation of scyphostatin analogues as inhibitors of neutral sphingomyelinase.
    Arenz C; Gartner M; Wascholowski V; Giannis A
    Bioorg Med Chem; 2001 Nov; 9(11):2901-4. PubMed ID: 11597471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient synthesis of a 4,5-epoxy-2-cyclohexen-1-one derivative bearing a spirolactone via a Diels-Alder reaction with high pi-facial selectivity: a synthetic study towards scyphostatin.
    Takagi R; Miyanaga W; Tamura Y; Ohkata K
    Chem Commun (Camb); 2002 Sep; (18):2096-7. PubMed ID: 12357795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of the scyphostatin side chain on the mode of inhibition of neutral sphingomyelinase.
    Wascholowski V; Giannis A; Pitsinos EN
    ChemMedChem; 2006 Jul; 1(7):718-21. PubMed ID: 16902925
    [No Abstract]   [Full Text] [Related]  

  • 20. Synthesis of a 4,5-epoxy-2-cyclohexen-1-one derivative via epoxide ring opening, 1,3-carbonyl transposition and epoxide ring regeneration: a synthetic study on a scyphostatin analogue.
    Takagi R; Tojo K; Iwata M; Ohkata K
    Org Biomol Chem; 2005 May; 3(10):2031-6. PubMed ID: 15889188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.