BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 21250945)

  • 21. Resveratrol promotes proteasome-dependent degradation of Nanog via p53 activation and induces differentiation of glioma stem cells.
    Sato A; Okada M; Shibuya K; Watanabe E; Seino S; Suzuki K; Narita Y; Shibui S; Kayama T; Kitanaka C
    Stem Cell Res; 2013 Jul; 11(1):601-10. PubMed ID: 23651583
    [TBL] [Abstract][Full Text] [Related]  

  • 22. p53-independent apoptosis and p53-dependent block of DNA rereplication following mitotic spindle inhibition in human cells.
    Casenghi M; Mangiacasale R; Tuynder M; Caillet-Fauquet P; Elhajouji A; Lavia P; Mousset S; Kirsch-Volders M; Cundari E
    Exp Cell Res; 1999 Aug; 250(2):339-50. PubMed ID: 10413588
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Viability of wild type p53-containing and p53-deficient tumor cells following anticancer treatment: the use of human papillomavirus E6 to target p53.
    Labrecque S; Matlashewski GJ
    Oncogene; 1995 Jul; 11(2):387-92. PubMed ID: 7624152
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reprogramming of mouse fibroblasts into induced pluripotent stem cells with Nanog.
    Moon JH; Yun W; Kim J; Hyeon S; Kang PJ; Park G; Kim A; Oh S; Whang KY; Kim DW; Yoon BS; You S
    Biochem Biophys Res Commun; 2013 Feb; 431(3):444-9. PubMed ID: 23333380
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mitotic UV irradiation induces a DNA replication-licensing defect that potentiates G1 arrest response.
    Morino M; Nukina K; Sakaguchi H; Maeda T; Takahara M; Shiomi Y; Nishitani H
    PLoS One; 2015; 10(3):e0120553. PubMed ID: 25798850
    [TBL] [Abstract][Full Text] [Related]  

  • 26. p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression.
    Lin T; Chao C; Saito S; Mazur SJ; Murphy ME; Appella E; Xu Y
    Nat Cell Biol; 2005 Feb; 7(2):165-71. PubMed ID: 15619621
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chromatin regulation landscape of embryonic stem cell identity.
    Lee YH; Wu Q
    Biosci Rep; 2011 Apr; 31(2):77-86. PubMed ID: 21091441
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of co-expression of OCT4, NANOG and SOX2 in pluripotent cells of the porcine embryo, in vivo and in vitro.
    du Puy L; Lopes SM; Haagsman HP; Roelen BA
    Theriogenology; 2011 Feb; 75(3):513-26. PubMed ID: 21074831
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanog co-regulated by Nodal/Smad2 and Oct4 is required for pluripotency in developing mouse epiblast.
    Sun LT; Yamaguchi S; Hirano K; Ichisaka T; Kuroda T; Tada T
    Dev Biol; 2014 Aug; 392(2):182-92. PubMed ID: 24929238
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanog suppresses cell migration by downregulating thymosin β4 and Rnd3.
    Zhou Y; Li S; Huang Q; Xie L; Zhu X
    J Mol Cell Biol; 2013 Aug; 5(4):239-49. PubMed ID: 23329853
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stem cells, senescence, neosis and self-renewal in cancer.
    Rajaraman R; Guernsey DL; Rajaraman MM; Rajaraman SR
    Cancer Cell Int; 2006 Nov; 6():25. PubMed ID: 17092342
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation.
    Tay Y; Zhang J; Thomson AM; Lim B; Rigoutsos I
    Nature; 2008 Oct; 455(7216):1124-8. PubMed ID: 18806776
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chk1 instability is coupled to mitotic cell death of p53-deficient cells in response to virus-induced DNA damage signaling.
    Jurvansuu J; Fragkos M; Ingemarsdotter C; Beard P
    J Mol Biol; 2007 Sep; 372(2):397-406. PubMed ID: 17663993
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nonhistone human chromatin protein PC4 is critical for genomic integrity and negatively regulates autophagy.
    Sikder S; Kumari S; Mustafi P; Ramdas N; Padhi S; Saha A; Bhaduri U; Banerjee B; Manjithaya R; Kundu TK
    FEBS J; 2019 Nov; 286(22):4422-4442. PubMed ID: 31169983
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Irradiation-induced polyploid giant cancer cells are involved in tumor cell repopulation via neosis.
    Zhang Z; Feng X; Deng Z; Cheng J; Wang Y; Zhao M; Zhao Y; He S; Huang Q
    Mol Oncol; 2021 Aug; 15(8):2219-2234. PubMed ID: 33523579
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Macroautophagy-aided elimination of chromatin: sorting of waste, sorting of fate?
    Erenpreisa J; Huna A; Salmina K; Jackson TR; Cragg MS
    Autophagy; 2012 Dec; 8(12):1877-81. PubMed ID: 22935563
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dna in chromatin of irradiated lymphoid tissues degrades in vivo into regular fragments.
    Skalka M; Matyásová J; Cejková M
    FEBS Lett; 1976 Dec; 72(2):271-4. PubMed ID: 16386038
    [No Abstract]   [Full Text] [Related]  

  • 38. Three steps to the immortality of cancer cells: senescence, polyploidy and self-renewal.
    Erenpreisa J; Cragg MS
    Cancer Cell Int; 2013 Sep; 13(1):92. PubMed ID: 24025698
    [TBL] [Abstract][Full Text] [Related]  

  • 39. P53 clears aneuploid cells by entosis.
    Rizzotto D; Villunger A
    Cell Death Differ; 2021 Feb; 28(2):818-820. PubMed ID: 33149274
    [No Abstract]   [Full Text] [Related]  

  • 40. Generation of cancer stem-like cells through the formation of polyploid giant cancer cells.
    Zhang S; Mercado-Uribe I; Xing Z; Sun B; Kuang J; Liu J
    Oncogene; 2014 Jan; 33(1):116-28. PubMed ID: 23524583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.