These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1623 related articles for article (PubMed ID: 21251164)
1. Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution. Taguchi K; Motohashi H; Yamamoto M Genes Cells; 2011 Feb; 16(2):123-40. PubMed ID: 21251164 [TBL] [Abstract][Full Text] [Related]
2. The Keap1-Nrf2 system as an in vivo sensor for electrophiles. Uruno A; Motohashi H Nitric Oxide; 2011 Aug; 25(2):153-60. PubMed ID: 21385624 [TBL] [Abstract][Full Text] [Related]
3. The Keap1-Nrf2 system and diabetes mellitus. Uruno A; Yagishita Y; Yamamoto M Arch Biochem Biophys; 2015 Jan; 566():76-84. PubMed ID: 25528168 [TBL] [Abstract][Full Text] [Related]
4. The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway. Baird L; Yamamoto M Mol Cell Biol; 2020 Jun; 40(13):. PubMed ID: 32284348 [TBL] [Abstract][Full Text] [Related]
5. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Kobayashi A; Kang MI; Okawa H; Ohtsuji M; Zenke Y; Chiba T; Igarashi K; Yamamoto M Mol Cell Biol; 2004 Aug; 24(16):7130-9. PubMed ID: 15282312 [TBL] [Abstract][Full Text] [Related]
6. Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2. Sun Z; Zhang S; Chan JY; Zhang DD Mol Cell Biol; 2007 Sep; 27(18):6334-49. PubMed ID: 17636022 [TBL] [Abstract][Full Text] [Related]
7. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Shibata T; Ohta T; Tong KI; Kokubu A; Odogawa R; Tsuta K; Asamura H; Yamamoto M; Hirohashi S Proc Natl Acad Sci U S A; 2008 Sep; 105(36):13568-73. PubMed ID: 18757741 [TBL] [Abstract][Full Text] [Related]
8. Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases. Villeneuve NF; Lau A; Zhang DD Antioxid Redox Signal; 2010 Dec; 13(11):1699-712. PubMed ID: 20486766 [TBL] [Abstract][Full Text] [Related]
9. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Zhang DD; Lo SC; Cross JV; Templeton DJ; Hannink M Mol Cell Biol; 2004 Dec; 24(24):10941-53. PubMed ID: 15572695 [TBL] [Abstract][Full Text] [Related]
10. Signaling pathways activated by the phytochemical nordihydroguaiaretic acid contribute to a Keap1-independent regulation of Nrf2 stability: Role of glycogen synthase kinase-3. Rojo AI; Medina-Campos ON; Rada P; Zúñiga-Toalá A; López-Gazcón A; Espada S; Pedraza-Chaverri J; Cuadrado A Free Radic Biol Med; 2012 Jan; 52(2):473-87. PubMed ID: 22142471 [TBL] [Abstract][Full Text] [Related]
11. Keap1 degradation by autophagy for the maintenance of redox homeostasis. Taguchi K; Fujikawa N; Komatsu M; Ishii T; Unno M; Akaike T; Motohashi H; Yamamoto M Proc Natl Acad Sci U S A; 2012 Aug; 109(34):13561-6. PubMed ID: 22872865 [TBL] [Abstract][Full Text] [Related]
12. A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Lau A; Wang XJ; Zhao F; Villeneuve NF; Wu T; Jiang T; Sun Z; White E; Zhang DD Mol Cell Biol; 2010 Jul; 30(13):3275-85. PubMed ID: 20421418 [TBL] [Abstract][Full Text] [Related]
13. Molecular mechanisms for the regulation of Nrf2-mediated cell proliferation in non-small-cell lung cancers. Yamadori T; Ishii Y; Homma S; Morishima Y; Kurishima K; Itoh K; Yamamoto M; Minami Y; Noguchi M; Hizawa N Oncogene; 2012 Nov; 31(45):4768-77. PubMed ID: 22249257 [TBL] [Abstract][Full Text] [Related]
14. Keap1-Nrf2 signaling pathway: mechanisms of regulation and role in protection of cells against toxicity caused by xenobiotics and electrophiles. Turpaev KT Biochemistry (Mosc); 2013 Feb; 78(2):111-26. PubMed ID: 23581983 [TBL] [Abstract][Full Text] [Related]
15. Review of molecular mechanisms involved in the activation of the Nrf2-ARE signaling pathway by chemopreventive agents. Giudice A; Arra C; Turco MC Methods Mol Biol; 2010; 647():37-74. PubMed ID: 20694660 [TBL] [Abstract][Full Text] [Related]
16. Zinc-binding triggers a conformational-switch in the cullin-3 substrate adaptor protein KEAP1 that controls transcription factor NRF2. McMahon M; Swift SR; Hayes JD Toxicol Appl Pharmacol; 2018 Dec; 360():45-57. PubMed ID: 30261176 [TBL] [Abstract][Full Text] [Related]
17. Discovery of the negative regulator of Nrf2, Keap1: a historical overview. Itoh K; Mimura J; Yamamoto M Antioxid Redox Signal; 2010 Dec; 13(11):1665-78. PubMed ID: 20446768 [TBL] [Abstract][Full Text] [Related]
18. Identification and characterization of novel Nrf2 inducers designed to target the intervening region of Keap1. Wu JH; Miao W; Hu LG; Batist G Chem Biol Drug Des; 2010 May; 75(5):475-80. PubMed ID: 20486933 [TBL] [Abstract][Full Text] [Related]
19. Acetyl-l-carnitine prevents homocysteine-induced suppression of Nrf2/Keap1 mediated antioxidation in human lens epithelial cells. Yang SP; Yang XZ; Cao GP Mol Med Rep; 2015 Jul; 12(1):1145-50. PubMed ID: 25776802 [TBL] [Abstract][Full Text] [Related]
20. Ubiquitination of Keap1, a BTB-Kelch substrate adaptor protein for Cul3, targets Keap1 for degradation by a proteasome-independent pathway. Zhang DD; Lo SC; Sun Z; Habib GM; Lieberman MW; Hannink M J Biol Chem; 2005 Aug; 280(34):30091-9. PubMed ID: 15983046 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]