BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 21251692)

  • 1. Oxidation of 2,4-dichlorophenol and 3,4-dichlorophenol by means of Fe(III)-homogeneous photocatalysis and algal toxicity assessment of the treated solutions.
    Andreozzi R; Di Somma I; Marotta R; Pinto G; Pollio A; Spasiano D
    Water Res; 2011 Feb; 45(5):2038-48. PubMed ID: 21251692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fe(III) homogeneous photocatalysis for the removal of 1,2-dichlorobenzene in aqueous solution by means UV lamp and solar light.
    Andreozzi R; Canterino M; Marotta R
    Water Res; 2006 Dec; 40(20):3785-92. PubMed ID: 17049962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of benzoic acid in aqueous solution by Fe(III) homogeneous photocatalysis.
    Andreozzi R; Marotta R
    Water Res; 2004 Mar; 38(5):1225-36. PubMed ID: 14975656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of the advanced oxidation of 2,4-dichlorophenol.
    Al Momani F; Sans C; Esplugas S
    J Hazard Mater; 2004 Mar; 107(3):123-9. PubMed ID: 15072820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic oxidative degradation of 17α-ethinylestradiol by FeIII-TAML/H2O2: estrogenicities of the products of partial, and extensive oxidation.
    Chen JL; Ravindran S; Swift S; Wright LJ; Singhal N
    Water Res; 2012 Dec; 46(19):6309-18. PubMed ID: 23022118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wet peroxide oxidation of chlorophenols.
    García-Molina V; López-Arias M; Florczyk M; Chamarro E; Esplugas S
    Water Res; 2005 Mar; 39(5):795-802. PubMed ID: 15743624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homogeneous iron-catalyzed photochemical degradation of muconic acid in water.
    Rodríguez E; Mimbrero M; Masa FJ; Beltrán FJ
    Water Res; 2007 Mar; 41(6):1325-33. PubMed ID: 17275064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Diuron degradation by direct UV photolysis and advanced oxidation processes.
    Djebbar KE; Zertal A; Debbache N; Sehili T
    J Environ Manage; 2008 Sep; 88(4):1505-12. PubMed ID: 18023525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photochemical treatment of 2-chlorophenol aqueous solutions using ultraviolet radiation, hydrogen peroxide and photo-Fenton reaction.
    Poulopoulos SG; Nikolaki M; Karampetsos D; Philippopoulos CJ
    J Hazard Mater; 2008 May; 153(1-2):582-7. PubMed ID: 17931771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of 4-chlorophenol mediated by Fe(III)-NTA in homogeneous and heterogeneous systems.
    Abida O; Emilio C; Quici N; Gettar R; Litter M; Mailhot G; Bolte M
    Water Sci Technol; 2004; 49(4):123-8. PubMed ID: 15077959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of 2,4-dichlorophenol in aqueous solution by a hybrid oxidation process.
    Li XZ; Zhao BX; Wang P
    J Hazard Mater; 2007 Aug; 147(1-2):281-7. PubMed ID: 17267103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction paths and efficiency of photocatalysis on TiO2 and of H2O2 photolysis in the degradation of 2-chlorophenol.
    Bertelli M; Selli E
    J Hazard Mater; 2006 Nov; 138(1):46-52. PubMed ID: 16787701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of advanced oxidation processes and identification of monuron photodegradation products in aqueous solution.
    Bobu M; Wilson S; Greibrokk T; Lundanes E; Siminiceanu I
    Chemosphere; 2006 Jun; 63(10):1718-27. PubMed ID: 16289213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of anilinopyrimidine fungicides photoinduced by iron(III)-polycarboxylate complexes.
    Anfossi L; Sales P; Vanni A
    Pest Manag Sci; 2006 Sep; 62(9):872-9. PubMed ID: 16847819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mechanism study of light-induced Cr(VI) reduction in an acidic solution.
    Wang SL; Chen CC; Tzou YM; Hsu CL; Chen JH; Lin CF
    J Hazard Mater; 2009 May; 164(1):223-8. PubMed ID: 18789578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wet oxidative method for removal of 2,4,6-trichlorophenol in water using Fe(III), Co(II), Ni(II) supported MCM41 catalysts.
    Chaliha S; Bhattacharyya KG
    J Hazard Mater; 2008 Feb; 150(3):728-36. PubMed ID: 17574332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of produced powerful radicals involved in the mineralization of bisphenol A using a novel UV-Na(2)S(2)O(8)/H(2)O(2)-Fe(II,III) two-stage oxidation process.
    Huang YF; Huang YH
    J Hazard Mater; 2009 Mar; 162(2-3):1211-6. PubMed ID: 18635314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH.
    Gheju M; Iovi A; Balcu I
    J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An investigation into advanced oxidation of three chlorophenoxy pesticides in surface water.
    MacAdam J; Parsons SA
    Water Sci Technol; 2009; 59(8):1665-71. PubMed ID: 19403981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of iron species in the photo-transformation of phenol in artificial and natural seawater.
    Calza P; Massolino C; Pelizzetti E; Minero C
    Sci Total Environ; 2012 Jun; 426():281-8. PubMed ID: 22503675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.