BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 2125176)

  • 1. Lactate and potassium fluxes from human skeletal muscle during and after intense, dynamic, knee extensor exercise.
    Juel C; Bangsbo J; Graham T; Saltin B
    Acta Physiol Scand; 1990 Oct; 140(2):147-59. PubMed ID: 2125176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactate and H+ effluxes from human skeletal muscles during intense, dynamic exercise.
    Bangsbo J; Johansen L; Graham T; Saltin B
    J Physiol; 1993 Mar; 462():115-33. PubMed ID: 8331579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water and ion shifts in skeletal muscle of humans with intense dynamic knee extension.
    Sjøgaard G; Adams RP; Saltin B
    Am J Physiol; 1985 Feb; 248(2 Pt 2):R190-6. PubMed ID: 3970234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic energy production and O2 deficit-debt relationship during exhaustive exercise in humans.
    Bangsbo J; Gollnick PD; Graham TE; Juel C; Kiens B; Mizuno M; Saltin B
    J Physiol; 1990 Mar; 422():539-59. PubMed ID: 2352192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elevated muscle glycogen and anaerobic energy production during exhaustive exercise in man.
    Bangsbo J; Graham TE; Kiens B; Saltin B
    J Physiol; 1992; 451():205-27. PubMed ID: 1403811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arterio-venous differences of blood acid-base status and plasma sodium caused by intense bicycling.
    Medbø JI; Hanem S; Noddeland H; Jebens E
    Acta Physiol Scand; 2000 Feb; 168(2):311-26. PubMed ID: 10712569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interrelationship between plasma potassium concentration, pulmonary ventilation and electrocardiographic change during and after highly intense exercise.
    von Duvillard SP; LeMura LM; Szmedra L; Di Vico P
    J Manipulative Physiol Ther; 1993 May; 16(4):238-44. PubMed ID: 8340718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle.
    Juel C; Klarskov C; Nielsen JJ; Krustrup P; Mohr M; Bangsbo J
    Am J Physiol Endocrinol Metab; 2004 Feb; 286(2):E245-51. PubMed ID: 14559724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Erythrocyte ion regulation across inactive muscle during leg exercise.
    McKelvie RS; Lindinger MI; Jones NL; Heigenhauser GJ
    Can J Physiol Pharmacol; 1992 Dec; 70(12):1625-33. PubMed ID: 1301241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociation between lactate and proton exchange in muscle during intense exercise in man.
    Bangsbo J; Juel C; Hellsten Y; Saltin B
    J Physiol; 1997 Oct; 504 ( Pt 2)(Pt 2):489-99. PubMed ID: 9365920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrates for muscle glycogen synthesis in recovery from intense exercise in man.
    Bangsbo J; Gollnick PD; Graham TE; Saltin B
    J Physiol; 1991 Mar; 434():423-40. PubMed ID: 1902517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactate elimination and glycogen resynthesis after intense bicycling.
    Medbø JI; Jebens E; Noddeland H; Hanem S; Toska K
    Scand J Clin Lab Invest; 2006; 66(3):211-26. PubMed ID: 16714250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potassium fluxes in contracting human skeletal muscle and red blood cells.
    Juel C; Hellsten Y; Saltin B; Bangsbo J
    Am J Physiol; 1999 Jan; 276(1):R184-8. PubMed ID: 9887193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle lactate metabolism in recovery from intense exhaustive exercise: impact of light exercise.
    Bangsbo J; Graham T; Johansen L; Saltin B
    J Appl Physiol (1985); 1994 Oct; 77(4):1890-5. PubMed ID: 7836214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton efflux in human skeletal muscle during recovery from exercise.
    Kemp GJ; Thompson CH; Taylor DJ; Radda GK
    Eur J Appl Physiol Occup Physiol; 1997; 76(5):462-71. PubMed ID: 9367287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lactate and H+ uptake in inactive muscles during intense exercise in man.
    Bangsbo J; Aagaard T; Olsen M; Kiens B; Turcotte LP; Richter EA
    J Physiol; 1995 Oct; 488 ( Pt 1)(Pt 1):219-29. PubMed ID: 8568658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic alkalosis reduces exercise-induced acidosis and potassium accumulation in human skeletal muscle interstitium.
    Street D; Nielsen JJ; Bangsbo J; Juel C
    J Physiol; 2005 Jul; 566(Pt 2):481-9. PubMed ID: 15860529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of muscle acidity on muscle metabolism and fatigue during intense exercise in man.
    Bangsbo J; Madsen K; Kiens B; Richter EA
    J Physiol; 1996 Sep; 495 ( Pt 2)(Pt 2):587-96. PubMed ID: 8887768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationship between plasma potassium concentration and muscle torque during recovery following intense exercise.
    McEniery CM; Jenkins DG; Barnett C
    Eur J Appl Physiol Occup Physiol; 1997; 75(5):462-6. PubMed ID: 9189736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of high-intensity intermittent training on potassium kinetics and performance in human skeletal muscle.
    Nielsen JJ; Mohr M; Klarskov C; Kristensen M; Krustrup P; Juel C; Bangsbo J
    J Physiol; 2004 Feb; 554(Pt 3):857-70. PubMed ID: 14634198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.