BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 21251844)

  • 1. Jatropha curcas oil body proteome and oleosins: L-form JcOle3 as a potential phylogenetic marker.
    Popluechai S; Froissard M; Jolivet P; Breviario D; Gatehouse AM; O'Donnell AG; Chardot T; Kohli A
    Plant Physiol Biochem; 2011 Mar; 49(3):352-6. PubMed ID: 21251844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic analysis of oil bodies in mature Jatropha curcas seeds with different lipid content.
    Liu H; Wang C; Chen F; Shen S
    J Proteomics; 2015 Jan; 113():403-14. PubMed ID: 25449834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic analysis of the seed development in Jatropha curcas: from carbon flux to the lipid accumulation.
    Liu H; Wang C; Komatsu S; He M; Liu G; Shen S
    J Proteomics; 2013 Oct; 91():23-40. PubMed ID: 23835435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome sequence of Jatropha curcas L., a non-edible biodiesel plant, provides a resource to improve seed-related traits.
    Ha J; Shim S; Lee T; Kang YJ; Hwang WJ; Jeong H; Laosatit K; Lee J; Kim SK; Satyawan D; Lestari P; Yoon MY; Kim MY; Chitikineni A; Tanya P; Somta P; Srinives P; Varshney RK; Lee SH
    Plant Biotechnol J; 2019 Feb; 17(2):517-530. PubMed ID: 30059608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oleosin genes in maize kernels having diverse oil contents are constitutively expressed independent of oil contents. Size and shape of intracellular oil bodies are determined by the oleosins/oils ratio.
    Ting JT; Lee K; Ratnayake C; Platt KA; Balsamo RA; Huang AH
    Planta; 1996; 199(1):158-65. PubMed ID: 8680304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene discovery from Jatropha curcas by sequencing of ESTs from normalized and full-length enriched cDNA library from developing seeds.
    Natarajan P; Kanagasabapathy D; Gunadayalan G; Panchalingam J; Shree N; Sugantham PA; Singh KK; Madasamy P
    BMC Genomics; 2010 Oct; 11():606. PubMed ID: 20979643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A promoter analysis of MOTHER OF FT AND TFL1 1 (JcMFT1), a seed-preferential gene from the biofuel plant Jatropha curcas.
    Tao YB; Luo L; He LL; Ni J; Xu ZF
    J Plant Res; 2014 Jul; 127(4):513-24. PubMed ID: 24879400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Over-expression of JcDGAT1 from Jatropha curcas increases seed oil levels and alters oil quality in transgenic Arabidopsis thaliana.
    Misra A; Khan K; Niranjan A; Nath P; Sane VA
    Phytochemistry; 2013 Dec; 96():37-45. PubMed ID: 24125179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression and subcellular targeting of a soybean oleosin in transgenic rapeseed. Implications for the mechanism of oil-body formation in seeds.
    Sarmiento C; Ross JH; Herman E; Murphy DJ
    Plant J; 1997 Apr; 11(4):783-96. PubMed ID: 9161036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping QTLs for oil traits and eQTLs for oleosin genes in jatropha.
    Liu P; Wang CM; Li L; Sun F; Liu P; Yue GH
    BMC Plant Biol; 2011 Sep; 11():132. PubMed ID: 21958236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of flowering by gibberellins in the woody plant Jatropha curcas is restored by overexpression of JcFT.
    Huang P; Yang J; Ke J; Cai L; Hu Y; Ni J; Li C; Xu ZF; Tang M
    Plant Sci; 2024 Jul; 344():112100. PubMed ID: 38679393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide screening of hexokinase gene family and functional elucidation of HXK2 response to cold stress in Jatropha curcas.
    Wang H; Xin H; Guo J; Gao Y; Liu C; Dai D; Tang L
    Mol Biol Rep; 2019 Apr; 46(2):1649-1660. PubMed ID: 30756333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of marker-free transgenic Jatropha curcas producing curcin-deficient seeds through endosperm-specific RNAi-mediated gene silencing.
    Gu K; Tian D; Mao H; Wu L; Yin Z
    BMC Plant Biol; 2015 Oct; 15():242. PubMed ID: 26450182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic analysis of oil mobilization in seed germination and postgermination development of Jatropha curcas.
    Yang MF; Liu YJ; Liu Y; Chen H; Chen F; Shen SH
    J Proteome Res; 2009 Mar; 8(3):1441-51. PubMed ID: 19152324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and validation of SNP markers linked to seed toxicity in Jatropha curcas L.
    Trebbi D; Ravi S; Broccanello C; Chiodi C; Francis G; Oliver J; Mulpuri S; Srinivasan S; Stevanato P
    Sci Rep; 2019 Jul; 9(1):10220. PubMed ID: 31308439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The differential proteome of endosperm and embryo from mature seed of Jatropha curcas.
    Liu H; Yang Z; Yang M; Shen S
    Plant Sci; 2011 Dec; 181(6):660-6. PubMed ID: 21958708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterologous expression of two GPATs from Jatropha curcas alters seed oil levels in transgenic Arabidopsis thaliana.
    Misra A; Khan K; Niranjan A; Kumar V; Sane VA
    Plant Sci; 2017 Oct; 263():79-88. PubMed ID: 28818386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and functional characterization of the JcERF gene, a putative AP2/EREBP domain-containing transcription factor, in the woody oil plant Jatropha curcas.
    Tang M; Sun J; Liu Y; Chen F; Shen S
    Plant Mol Biol; 2007 Feb; 63(3):419-28. PubMed ID: 17103014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breeding of high-oil Jatropha curcas L for biodiesel production.
    Yang C; Fang Z; Li B; Liu G; Li J
    Sheng Wu Gong Cheng Xue Bao; 2010 Nov; 26(11):1514-25. PubMed ID: 21280435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene expression profiling identifies pathways involved in seed maturation of Jatropha curcas.
    Maghuly F; Deák T; Vierlinger K; Pabinger S; Tafer H; Laimer M
    BMC Genomics; 2020 Apr; 21(1):290. PubMed ID: 32272887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.