BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 21251920)

  • 1. The role of propriospinal interneurons in recovery from spinal cord injury.
    Flynn JR; Graham BA; Galea MP; Callister RJ
    Neuropharmacology; 2011 Apr; 60(5):809-22. PubMed ID: 21251920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intervention strategies to enhance anatomical plasticity and recovery of function after spinal cord injury.
    Bregman BS; Diener PS; McAtee M; Dai HN; James C
    Adv Neurol; 1997; 72():257-75. PubMed ID: 8993704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BDNF promotes connections of corticospinal neurons onto spared descending interneurons in spinal cord injured rats.
    Vavrek R; Girgis J; Tetzlaff W; Hiebert GW; Fouad K
    Brain; 2006 Jun; 129(Pt 6):1534-45. PubMed ID: 16632552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential vulnerability of propriospinal tract neurons to spinal cord contusion injury.
    Conta AC; Stelzner DJ
    J Comp Neurol; 2004 Nov; 479(4):347-59. PubMed ID: 15514981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of spinal cord injury on the neural regulation of respiratory function.
    Zimmer MB; Nantwi K; Goshgarian HG
    Exp Neurol; 2008 Feb; 209(2):399-406. PubMed ID: 17603041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasticity in the injured spinal cord: can we use it to advantage to reestablish effective bladder voiding and continence?
    Zinck ND; Downie JW
    Prog Brain Res; 2006; 152():147-62. PubMed ID: 16198699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats.
    Bareyre FM; Kerschensteiner M; Raineteau O; Mettenleiter TC; Weinmann O; Schwab ME
    Nat Neurosci; 2004 Mar; 7(3):269-77. PubMed ID: 14966523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in CNS structures after spinal cord lesions implications for BMI.
    Martinez M; Rossignol S
    Prog Brain Res; 2011; 194():191-202. PubMed ID: 21867804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ability of human Schwann cell grafts to promote regeneration in the transected nude rat spinal cord.
    Guest JD; Rao A; Olson L; Bunge MB; Bunge RP
    Exp Neurol; 1997 Dec; 148(2):502-22. PubMed ID: 9417829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chapter 16--spinal plasticity in the recovery of locomotion.
    Rossignol S; Frigon A; Barrière G; Martinez M; Barthélemy D; Bouyer L; Bélanger M; Provencher J; Chau C; Brustein E; Barbeau H; Giroux N; Marcoux J; Langlet C; Alluin O
    Prog Brain Res; 2011; 188():229-41. PubMed ID: 21333814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional changes in deep dorsal horn interneurons following spinal cord injury are enhanced with different durations of exercise training.
    Rank MM; Flynn JR; Battistuzzo CR; Galea MP; Callister R; Callister RJ
    J Physiol; 2015 Jan; 593(1):331-45. PubMed ID: 25556804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous regeneration of intrinsic spinal cord axons in a novel spinal cord slice culture model.
    Bonnici B; Kapfhammer JP
    Eur J Neurosci; 2008 May; 27(10):2483-92. PubMed ID: 18513321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasticity of motor systems after incomplete spinal cord injury.
    Raineteau O; Schwab ME
    Nat Rev Neurosci; 2001 Apr; 2(4):263-73. PubMed ID: 11283749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dual spinal cord lesion paradigm to study spinal locomotor plasticity in the cat.
    Martinez M; Rossignol S
    Ann N Y Acad Sci; 2013 Mar; 1279():127-34. PubMed ID: 23531010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Body weight supported gait training: from laboratory to clinical setting.
    Dietz V
    Brain Res Bull; 2008 Jul; 76(5):459-63. PubMed ID: 18534251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategies to restore motor functions after spinal cord injury.
    Boulenguez P; Vinay L
    Curr Opin Neurobiol; 2009 Dec; 19(6):587-600. PubMed ID: 19896827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spinal and supraspinal plasticity after incomplete spinal cord injury: correlations between functional magnetic resonance imaging and engaged locomotor networks.
    Dobkin BH
    Prog Brain Res; 2000; 128():99-111. PubMed ID: 11105672
    [No Abstract]   [Full Text] [Related]  

  • 18. Intercostal nerve neurouma (PNS) implantation in spinal cord bridging spinal cord transection a functional internuncal pathway system result in recovery from paraplegia.
    Turbes CC
    Biomed Sci Instrum; 2001; 37():137-42. PubMed ID: 11347377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasticity of spinal centers in spinal cord injury patients: new concepts for gait evaluation and training.
    Scivoletto G; Ivanenko Y; Morganti B; Grasso R; Zago M; Lacquaniti F; Ditunno J; Molinari M
    Neurorehabil Neural Repair; 2007; 21(4):358-65. PubMed ID: 17353461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms underlying the recovery of lower urinary tract function following spinal cord injury.
    de Groat WC; Yoshimura N
    Prog Brain Res; 2006; 152():59-84. PubMed ID: 16198694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.