These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 2125266)

  • 1. Properties and partial characterization of the heat-shock factor from Tetrahymena pyriformis.
    Avides Mdo C; Sunkel CE; Moradas-Ferreira P; Rodrigues-Pousada C
    Eur J Biochem; 1990 Dec; 194(2):331-6. PubMed ID: 2125266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and characterization of a heat-shock element binding protein from yeast.
    Sorger PK; Pelham HR
    EMBO J; 1987 Oct; 6(10):3035-41. PubMed ID: 3319580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Saccharomyces and Drosophila heat shock transcription factors are identical in size and DNA binding properties.
    Wiederrecht G; Shuey DJ; Kibbe WA; Parker CS
    Cell; 1987 Feb; 48(3):507-15. PubMed ID: 3100052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The heat shock transcription factor in liver exists in a form that has DNA binding activity but no transcriptional activity.
    Takahashi R; Heydari AR; Gutsmann A; Sabia M; Richardson A
    Biochem Biophys Res Commun; 1994 Jun; 201(2):552-8. PubMed ID: 8002986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress response of Tetrahymena pyriformis to arsenite and heat shock: differences and similarities.
    Amaral MD; Galego L; Rodrigues-Pousada C
    Eur J Biochem; 1988 Feb; 171(3):463-70. PubMed ID: 3126063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Destabilization of tubulin mRNA during heat shock in Tetrahymena pyriformis.
    Cóias R; Galego L; Barahona I; Rodrigues-Pousada C
    Eur J Biochem; 1988 Aug; 175(3):467-74. PubMed ID: 3137027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constitutive and heat-inducible heat shock element binding activities of heat shock factor in a group of filamentous fungi.
    Xavier IJ; Khachatourians GG; Ovsenek N
    Cell Stress Chaperones; 1999 Dec; 4(4):211-22. PubMed ID: 10590835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-dependent decrease in the heat-inducible DNA sequence-specific binding activity in human diploid fibroblasts.
    Choi HS; Lin Z; Li BS; Liu AY
    J Biol Chem; 1990 Oct; 265(29):18005-11. PubMed ID: 2211677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct stress-inducible and developmentally regulated heat shock transcription factors in Xenopus oocytes.
    Gordon S; Bharadwaj S; Hnatov A; Ali A; Ovsenek N
    Dev Biol; 1997 Jan; 181(1):47-63. PubMed ID: 9015264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in DNA-sequence recognition between the DNA-binding domain fragment and the full-length molecule of the heat-shock transcription factor of schistosome.
    Lardans V; Ram D; Lantner F; Ziv E; Schechter I
    Biochim Biophys Acta; 2001 Jun; 1519(3):230-4. PubMed ID: 11418190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of heat shock element-binding activities by gel shift assay during mouse preimplantation development.
    Mezger V; Renard JP; Christians E; Morange M
    Dev Biol; 1994 Oct; 165(2):627-38. PubMed ID: 7958427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable overexpression of human HSF-1 in murine cells suggests activation rather than expression of HSF-1 to be the key regulatory step in the heat shock gene expression.
    Mivechi NF; Shi XY; Hahn GM
    J Cell Biochem; 1995 Oct; 59(2):266-80. PubMed ID: 8904320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The C-terminal hydrophobic repeat of Schizosaccharomyces pombe heat shock factor is not required for heat-induced DNA-binding.
    Saltsman KA; Prentice HL; Kingston RE
    Yeast; 1998 Jun; 14(8):733-46. PubMed ID: 9675818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical evidence for the presence of an actin protein in Tetrahymena pyriformis.
    Mitchell EJ; Zimmerman AM
    J Cell Sci; 1985 Feb; 73():279-97. PubMed ID: 3926782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat shock factor is regulated differently in yeast and HeLa cells.
    Sorger PK; Lewis MJ; Pelham HR
    Nature; 1987 Sep 3-9; 329(6134):81-4. PubMed ID: 3306402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 'Stress-proteins' are induced in Tetrahymena pyriformis by histidinol but not in mammalian (L-929) cells.
    Ron A; Wheatley DN
    Exp Cell Res; 1984 Jul; 153(1):158-66. PubMed ID: 6428926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of stress proteins in cultured myogenic cells. Molecular signals for the activation of heat shock transcription factor during ischemia.
    Benjamin IJ; Horie S; Greenberg ML; Alpern RJ; Williams RS
    J Clin Invest; 1992 May; 89(5):1685-9. PubMed ID: 1569208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a nuclear protein that constitutively recognizes the sequence containing a heat-shock element. Its binding properties and possible function modulating heat-shock induction of the rat heme oxygenase gene.
    Okinaga S; Shibahara S
    Eur J Biochem; 1993 Feb; 212(1):167-75. PubMed ID: 8444154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic variant in the HSPB1 promoter region impairs the HSP27 stress response.
    Dierick I; Irobi J; Janssens S; Theuns J; Lemmens R; Jacobs A; Corsmit E; Hersmus N; Van Den Bosch L; Robberecht W; De Jonghe P; Van Broeckhoven C; Timmerman V
    Hum Mutat; 2007 Aug; 28(8):830. PubMed ID: 17623484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of the Neurospora crassa heat shock factor with the heat shock element during heat shock and different developmental stages.
    Meyer U; Monnerjahn C; Techel D; Rensing L
    FEMS Microbiol Lett; 2000 Apr; 185(2):255-61. PubMed ID: 10754257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.