These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Single- and mixed-linker Cr-MIL-101 derivatives: a high-throughput investigation. Lammert M; Bernt S; Vermoortele F; De Vos DE; Stock N Inorg Chem; 2013 Aug; 52(15):8521-8. PubMed ID: 23829498 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and post-synthetic modification of MIL-101(Cr)-NH2 via a tandem diazotisation process. Jiang D; Keenan LL; Burrows AD; Edler KJ Chem Commun (Camb); 2012 Dec; 48(99):12053-5. PubMed ID: 23079726 [TBL] [Abstract][Full Text] [Related]
5. Comparative study of hydrogen sulfide adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) metal-organic frameworks at room temperature. Hamon L; Serre C; Devic T; Loiseau T; Millange F; Férey G; De Weireld G J Am Chem Soc; 2009 Jul; 131(25):8775-7. PubMed ID: 19505146 [TBL] [Abstract][Full Text] [Related]
6. Soft synthesis of isocyanate-functionalised metal-organic frameworks. Vitillo JG; Lescouet T; Savonnet M; Farrusseng D; Bordiga S Dalton Trans; 2012 Dec; 41(47):14236-8. PubMed ID: 23108033 [TBL] [Abstract][Full Text] [Related]
7. XRD and IR structural investigations of a particular breathing effect in the MOF-type gallium terephthalate MIL-53(Ga). Volkringer C; Loiseau T; Guillou N; Férey G; Elkaïm E; Vimont A Dalton Trans; 2009 Mar; (12):2241-9. PubMed ID: 19274304 [TBL] [Abstract][Full Text] [Related]
8. The introduction of functional side groups and the application of the mixed-linker concept in divalent MIL-53(Ni) materials. Bitzer J; Titze-Alonso A; Roshdy A; Kleist W Dalton Trans; 2020 Jul; 49(26):9148-9154. PubMed ID: 32578640 [TBL] [Abstract][Full Text] [Related]
9. [Synthesis and properties of oligonucleotide derivatives containing chemical active ureido groups]. Ivanovskaia MG; Naryshkin NA; Shabarova ZA Bioorg Khim; 1995 Jun; 21(6):454-60. PubMed ID: 7661870 [TBL] [Abstract][Full Text] [Related]
10. Protein tyrosine nitration: selectivity, physicochemical and biological consequences, denitration, and proteomics methods for the identification of tyrosine-nitrated proteins. Abello N; Kerstjens HA; Postma DS; Bischoff R J Proteome Res; 2009 Jul; 8(7):3222-38. PubMed ID: 19415921 [TBL] [Abstract][Full Text] [Related]
11. Protein tyrosine nitration--an update. Ischiropoulos H Arch Biochem Biophys; 2009 Apr; 484(2):117-21. PubMed ID: 19007743 [TBL] [Abstract][Full Text] [Related]
12. Disruption of the disulfide bonds of recombinant murine interleukin-6 induces formation of a partially unfolded state. Zhang JG; Matthews JM; Ward LD; Simpson RJ Biochemistry; 1997 Mar; 36(9):2380-9. PubMed ID: 9054543 [TBL] [Abstract][Full Text] [Related]
13. Nuclear magnetic resonance studies on covalent modification of amino acids thiol and amino residues by monofunctional aryl 13C-isocyanates, models of skin and respiratory sensitizers: transformation of thiocarbamates into urea adducts. Fleischel O; Giménez-Arnau E; Lepoittevin JP Chem Res Toxicol; 2009 Jun; 22(6):1106-15. PubMed ID: 19405514 [TBL] [Abstract][Full Text] [Related]
14. Chemical modification of enzymes for enhanced functionality. DeSantis G; Jones JB Curr Opin Biotechnol; 1999 Aug; 10(4):324-30. PubMed ID: 10449313 [TBL] [Abstract][Full Text] [Related]
15. Effect of pH and denaturants on the folding and stability of murine interleukin-6. Ward LD; Zhang JG; Checkley G; Preston B; Simpson RJ Protein Sci; 1993 Aug; 2(8):1291-300. PubMed ID: 8401214 [TBL] [Abstract][Full Text] [Related]
16. Aromatic hydrocarbon nitration under tropospheric and combustion conditions. A theoretical mechanistic study. Ghigo G; Causà M; Maranzana A; Tonachini G J Phys Chem A; 2006 Dec; 110(49):13270-82. PubMed ID: 17149846 [TBL] [Abstract][Full Text] [Related]
17. Mitochondrial protein tyrosine nitration. Castro L; Demicheli V; Tórtora V; Radi R Free Radic Res; 2011 Jan; 45(1):37-52. PubMed ID: 20942571 [TBL] [Abstract][Full Text] [Related]
18. Co-adsorption and separation of CO2-CH4 mixtures in the highly flexible MIL-53(Cr) MOF. Hamon L; Llewellyn PL; Devic T; Ghoufi A; Clet G; Guillerm V; Pirngruber GD; Maurin G; Serre C; Driver G; van Beek W; Jolimaître E; Vimont A; Daturi M; Férey G J Am Chem Soc; 2009 Dec; 131(47):17490-9. PubMed ID: 19904944 [TBL] [Abstract][Full Text] [Related]
19. A novel method for chemical modification of functional groups other than a carboxyl group in proteins by N-ethyl-5-phenylisooxazolium-3'-sulfonate (Woodward's reagent-K): inhibition of ADP-induced platelet responses involves covalent modification of aggregin, an ADP receptor. Puri RN; Colman RW Anal Biochem; 1996 Sep; 240(2):251-61. PubMed ID: 8811919 [TBL] [Abstract][Full Text] [Related]
20. Formation of the amino acid-DNA complexes by hexavalent and trivalent chromium in vitro: importance of trivalent chromium and the phosphate group. Zhitkovich A; Voitkun V; Costa M Biochemistry; 1996 Jun; 35(22):7275-82. PubMed ID: 8679557 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]