These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 21253649)
1. Zinc finger proteins as templates for metal ion exchange and ligand reactivity. Chemical and biological consequences. Quintal SM; dePaula QA; Farrell NP Metallomics; 2011 Feb; 3(2):121-39. PubMed ID: 21253649 [TBL] [Abstract][Full Text] [Related]
2. Zinc finger proteins as templates for metal ion exchange: Substitution effects on the C-finger of HIV nucleocapsid NCp7 using M(chelate) species (M=Pt, Pd, Au). de Paula QA; Mangrum JB; Farrell NP J Inorg Biochem; 2009 Oct; 103(10):1347-54. PubMed ID: 19692125 [TBL] [Abstract][Full Text] [Related]
3. Thiolate bridging and metal exchange in adducts of a zinc finger model and Pt(II) complexes: biomimetic studies of protein/Pt/DNA interactions. Almaraz E; de Paula QA; Liu Q; Reibenspies JH; Darensbourg MY; Farrell NP J Am Chem Soc; 2008 May; 130(19):6272-80. PubMed ID: 18422317 [TBL] [Abstract][Full Text] [Related]
4. Metals on the move: zinc ions in cellular regulation and in the coordination dynamics of zinc proteins. Maret W Biometals; 2011 Jun; 24(3):411-8. PubMed ID: 21221719 [TBL] [Abstract][Full Text] [Related]
5. New perspectives of zinc coordination environments in proteins. Maret W J Inorg Biochem; 2012 Jun; 111():110-6. PubMed ID: 22196021 [TBL] [Abstract][Full Text] [Related]
7. Targeting retroviral Zn finger-DNA interactions: a small-molecule approach using the electrophilic nature of trans-platinum-nucleobase compounds. Anzellotti AI; Liu Q; Bloemink MJ; Scarsdale JN; Farrell N Chem Biol; 2006 May; 13(5):539-48. PubMed ID: 16720275 [TBL] [Abstract][Full Text] [Related]
8. Deducing the energetic cost of protein folding in zinc finger proteins using designed metallopeptides. Reddi AR; Guzman TR; Breece RM; Tierney DL; Gibney BR J Am Chem Soc; 2007 Oct; 129(42):12815-27. PubMed ID: 17902663 [TBL] [Abstract][Full Text] [Related]
9. Multiple modes of RNA recognition by zinc finger proteins. Hall TM Curr Opin Struct Biol; 2005 Jun; 15(3):367-73. PubMed ID: 15963892 [TBL] [Abstract][Full Text] [Related]
10. Structural adaptability of zinc binding sites: different structures in partially, fully, and heavy-metal loaded states. Heinz U; Hemmingsen L; Kiefer M; Adolph HW Chemistry; 2009 Jul; 15(30):7350-8. PubMed ID: 19551786 [TBL] [Abstract][Full Text] [Related]
11. Why zinc fingers prefer zinc: ligand-field symmetry and the hidden thermodynamics of metal ion selectivity. Lachenmann MJ; Ladbury JE; Dong J; Huang K; Carey P; Weiss MA Biochemistry; 2004 Nov; 43(44):13910-25. PubMed ID: 15518539 [TBL] [Abstract][Full Text] [Related]
12. Zinc finger domains as therapeutic targets for metal-based compounds - an update. Abbehausen C Metallomics; 2019 Jan; 11(1):15-28. PubMed ID: 30303505 [TBL] [Abstract][Full Text] [Related]
13. Femtomolar Zn(II) affinity in a peptide-based ligand designed to model thiolate-rich metalloprotein active sites. Petros AK; Reddi AR; Kennedy ML; Hyslop AG; Gibney BR Inorg Chem; 2006 Dec; 45(25):9941-58. PubMed ID: 17140191 [TBL] [Abstract][Full Text] [Related]
14. Damage of zinc fingers in DNA repair proteins, a novel molecular mechanism in carcinogenesis. Witkiewicz-Kucharczyk A; Bal W Toxicol Lett; 2006 Mar; 162(1):29-42. PubMed ID: 16310985 [TBL] [Abstract][Full Text] [Related]
15. Utilization of a synthetic peptide as a tool to study the interaction of heavy metals with the zinc finger domain of proteins critical for gene expression in the developing brain. Razmiafshari M; Zawia NH Toxicol Appl Pharmacol; 2000 Jul; 166(1):1-12. PubMed ID: 10873713 [TBL] [Abstract][Full Text] [Related]
17. Dissecting the general physicochemical properties of noncovalent interactions involving tyrosine side chain as a second-shell ligand in biomolecular metal-binding site mimetics: an experimental study combining fluorescence, 13C NMR spectroscopy and ESI mass spectrometry. Yang CM; Li X; Wei W; Li Y; Duan Z; Zheng J; Huang T Chemistry; 2007; 13(11):3120-30. PubMed ID: 17201001 [TBL] [Abstract][Full Text] [Related]
18. The Zinc proteome: a tale of stability and functionality. Sousa SF; Lopes AB; Fernandes PA; Ramos MJ Dalton Trans; 2009 Oct; (38):7946-56. PubMed ID: 19771357 [TBL] [Abstract][Full Text] [Related]
19. Spectroscopic elucidation of the inhibitory mechanism of Cys2His2 zinc finger transcription factors by cobalt(III) Schiff base complexes. Heffern MC; Kurutz JW; Meade TJ Chemistry; 2013 Dec; 19(50):17043-53. PubMed ID: 24203451 [TBL] [Abstract][Full Text] [Related]
20. Reversal of the hydrogen bond to zinc ligand histidine-119 dramatically diminishes catalysis and enhances metal equilibration kinetics in carbonic anhydrase II. Huang CC; Lesburg CA; Kiefer LL; Fierke CA; Christianson DW Biochemistry; 1996 Mar; 35(11):3439-46. PubMed ID: 8639494 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]