BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

885 related articles for article (PubMed ID: 21253926)

  • 21. Development of antifouling reverse osmosis membranes for water treatment: A review.
    Kang GD; Cao YM
    Water Res; 2012 Mar; 46(3):584-600. PubMed ID: 22154112
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pressure drop increase by biofilm accumulation in spiral wound RO and NF membrane systems: role of substrate concentration, flow velocity, substrate load and flow direction.
    Vrouwenvelder JS; Hinrichs C; Van der Meer WG; Van Loosdrecht MC; Kruithof JC
    Biofouling; 2009; 25(6):543-55. PubMed ID: 19437193
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems.
    Bucs SS; Valladares Linares R; van Loosdrecht MC; Kruithof JC; Vrouwenvelder JS
    Water Res; 2014 Dec; 67():227-42. PubMed ID: 25282091
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of membrane surface properties on the behavior of initial bacterial adhesion and biofilm development onto nanofiltration membranes.
    Myint AA; Lee W; Mun S; Ahn CH; Lee S; Yoon J
    Biofouling; 2010; 26(3):313-21. PubMed ID: 20087803
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diminished swelling of cross-linked aromatic oligoamide surfaces revealing a new fouling mechanism of reverse-osmosis membranes.
    Ying W; Kumar R; Herzberg M; Kasher R
    Environ Sci Technol; 2015 Jun; 49(11):6815-22. PubMed ID: 25920584
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative structure-activity relationship (QSAR) analysis of surfactants influencing attachment of a Mycobacterium sp. to cellulose acetate and aromatic polyamide reverse osmosis membranes.
    Campbell P; Srinivasan R; Knoell T; Phipps D; Ishida K; Safarik J; Cormack T; Ridgway H
    Biotechnol Bioeng; 1999 Sep; 64(5):527-44. PubMed ID: 10404233
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of biofouling on pharmaceuticals rejection in NF membrane filtration.
    Botton S; Verliefde AR; Quach NT; Cornelissen ER
    Water Res; 2012 Nov; 46(18):5848-60. PubMed ID: 22960036
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Does chlorination of seawater reverse osmosis membranes control biofouling?
    Khan MT; Hong PY; Nada N; Croue JP
    Water Res; 2015 Jul; 78():84-97. PubMed ID: 25917390
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling. 1. Preparation and characterization of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane.
    Kwak SY; Kim SH; Kim SS
    Environ Sci Technol; 2001 Jun; 35(11):2388-94. PubMed ID: 11414050
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tailoring the structure of thin film nanocomposite membranes to achieve seawater RO membrane performance.
    Lind ML; Eumine Suk D; Nguyen TV; Hoek EM
    Environ Sci Technol; 2010 Nov; 44(21):8230-5. PubMed ID: 20942398
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface Grafting of Reverse Osmosis Membrane with Chlorhexidine Using Biopolymer Alginate Dialdehyde as a Facile Green Platform for In Situ Biofouling Control.
    Khan R; Wang H; Li Y; Yu S; Khan MK; Xiao K; Huang X
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37515-37526. PubMed ID: 32701290
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biofiltration pretreatment for reverse osmosis (RO) membrane in a water reclamation system.
    Hu JY; Song LF; Ong SL; Phua ET; Ng WJ
    Chemosphere; 2005 Mar; 59(1):127-33. PubMed ID: 15698653
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessing the effect of surface modification of polyamide RO membrane by l-DOPA on the short range physiochemical interactions with biopolymer fouling on the membrane.
    Azari S; Zou L; Cornelissen E
    Colloids Surf B Biointerfaces; 2014 Aug; 120():222-8. PubMed ID: 24916284
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of the biofouling and cleaning efficiency of nanofiltration membranes.
    Houari A; Seyer D; Couquard F; Kecili K; Democrate C; Heim V; Di Martino P
    Biofouling; 2010 Jan; 26(1):15-21. PubMed ID: 20390552
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Swelling and morphology of the skin layer of polyamide composite membranes: an atomic force microscopy study.
    Freger V
    Environ Sci Technol; 2004 Jun; 38(11):3168-75. PubMed ID: 15224751
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of membrane fouling for in-line filtration of oil sands process-affected water: the effects of pretreatment conditions.
    Kim ES; Liu Y; Gamal El-Din M
    Environ Sci Technol; 2012 Mar; 46(5):2877-84. PubMed ID: 22279959
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of silica fouling on the removal of pharmaceuticals and personal care products by nanofiltration and reverse osmosis membranes.
    Lin YL; Chiou JH; Lee CH
    J Hazard Mater; 2014 Jul; 277():102-9. PubMed ID: 24560524
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bacterial attachment to RO membranes surface-modified by concentration-polarization-enhanced graft polymerization.
    Bernstein R; Belfer S; Freger V
    Environ Sci Technol; 2011 Jul; 45(14):5973-80. PubMed ID: 21682251
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In-situ biofilm characterization in membrane systems using Optical Coherence Tomography: formation, structure, detachment and impact of flux change.
    Dreszer C; Wexler AD; Drusová S; Overdijk T; Zwijnenburg A; Flemming HC; Kruithof JC; Vrouwenvelder JS
    Water Res; 2014 Dec; 67():243-54. PubMed ID: 25282092
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid novel test for the determination of biofouling potential on reverse osmosis membranes.
    Manalo CV; Ohno M; Okuda T; Nakai S; Nishijima W
    Water Sci Technol; 2016; 73(12):2978-85. PubMed ID: 27332844
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 45.