BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

885 related articles for article (PubMed ID: 21253926)

  • 61. Validation of 3D simulations of reverse osmosis membrane biofouling.
    Pintelon TR; Creber SA; von der Schulenburg DA; Johns ML
    Biotechnol Bioeng; 2010 Jul; 106(4):677-89. PubMed ID: 20205206
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Mitigating biofouling with a vanillin coating on thin film composite reverse osmosis membranes.
    Shin H; Park C; Lee CK; Lee YS; Kim JO
    Environ Sci Pollut Res Int; 2020 Jan; 27(2):1677-1685. PubMed ID: 31755056
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Impact of flow regime on pressure drop increase and biomass accumulation and morphology in membrane systems.
    Vrouwenvelder JS; Buiter J; Riviere M; van der Meer WG; van Loosdrecht MC; Kruithof JC
    Water Res; 2010 Feb; 44(3):689-702. PubMed ID: 19836048
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Gypsum scaling and cleaning in forward osmosis: measurements and mechanisms.
    Mi B; Elimelech M
    Environ Sci Technol; 2010 Mar; 44(6):2022-8. PubMed ID: 20151636
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Comparison of biofouling mechanisms between cellulose triacetate (CTA) and thin-film composite (TFC) polyamide forward osmosis membranes in osmotic membrane bioreactors.
    Wang X; Zhao Y; Yuan B; Wang Z; Li X; Ren Y
    Bioresour Technol; 2016 Feb; 202():50-8. PubMed ID: 26700758
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Functionalization of reverse osmosis membrane with graphene oxide and polyacrylic acid to control biofouling and mineral scaling.
    Ashfaq MY; Al-Ghouti MA; Zouari N
    Sci Total Environ; 2020 Sep; 736():139500. PubMed ID: 32479964
    [TBL] [Abstract][Full Text] [Related]  

  • 67. In situ surface chemical modification of thin-film composite forward osmosis membranes for enhanced organic fouling resistance.
    Lu X; Romero-Vargas Castrillón S; Shaffer DL; Ma J; Elimelech M
    Environ Sci Technol; 2013; 47(21):12219-28. PubMed ID: 24066902
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Influence of surface properties of RO membrane on membrane fouling for treating textile secondary effluent.
    Yin Z; Yang C; Long C; Li A
    Environ Sci Pollut Res Int; 2017 Jul; 24(19):16253-16262. PubMed ID: 28540548
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Impact of higher alginate expression on deposition of Pseudomonas aeruginosa in radial stagnation point flow and reverse osmosis systems.
    Herzberg M; Rezene TZ; Ziemba C; Gillor O; Mathee K
    Environ Sci Technol; 2009 Oct; 43(19):7376-83. PubMed ID: 19848149
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Efficient wastewater treatment by membranes through constructing tunable antifouling membrane surfaces.
    Chen W; Su Y; Peng J; Zhao X; Jiang Z; Dong Y; Zhang Y; Liang Y; Liu J
    Environ Sci Technol; 2011 Aug; 45(15):6545-52. PubMed ID: 21711041
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Four release tests exhibit variable silver stability from nanoparticle-modified reverse osmosis membranes.
    Bi Y; Han B; Zimmerman S; Perreault F; Sinha S; Westerhoff P
    Water Res; 2018 Oct; 143():77-86. PubMed ID: 29940364
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Grafted Polymer Coatings Enhance Fouling Inhibition by an Antimicrobial Peptide on Reverse Osmosis Membranes.
    Shtreimer Kandiyote N; Avisdris T; Arnusch CJ; Kasher R
    Langmuir; 2019 Feb; 35(5):1935-1943. PubMed ID: 30576152
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Non-destructive approaches for assessing biofouling of household reverse osmosis membranes.
    Markwardt SD; Ronnie N; Camper AK
    Biofouling; 2018 Aug; 34(7):740-752. PubMed ID: 30270657
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effect of anionic fluidized ion exchange (FIX) pre-treatment on nanofiltration (NF) membrane fouling.
    Cornelissen ER; Chasseriaud D; Siegers WG; Beerendonk EF; van der Kooij D
    Water Res; 2010 May; 44(10):3283-93. PubMed ID: 20381111
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Distillery wastewater treatment by the membrane-based nanofiltration and reverse osmosis processes.
    Nataraj SK; Hosamani KM; Aminabhavi TM
    Water Res; 2006 Jul; 40(12):2349-56. PubMed ID: 16757012
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Recycling of end-of-life reverse osmosis membranes for membrane biofilms reactors (MBfRs). Effect of chlorination on the membrane surface and gas permeability.
    Morón-López J; Nieto-Reyes L; Aguado S; El-Shehawy R; Molina S
    Chemosphere; 2019 Sep; 231():103-112. PubMed ID: 31128344
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effects of biofilm formation on membrane performance in submerged membrane bioreactors.
    Mafirad S; Mehrnia MR; Azami H; Sarrafzadeh MH
    Biofouling; 2011 May; 27(5):477-85. PubMed ID: 21604217
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Adsorption combined with ultrafiltration to remove organic matter from seawater.
    Tansakul C; Laborie S; Cabassud C
    Water Res; 2011 Dec; 45(19):6362-70. PubMed ID: 21996607
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Achieving very low mercury levels in refinery wastewater by membrane filtration.
    Urgun-Demirtas M; Benda PL; Gillenwater PS; Negri MC; Xiong H; Snyder SW
    J Hazard Mater; 2012 May; 215-216():98-107. PubMed ID: 22410725
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A new concept in polymeric thin-film composite nanofiltration membranes with antibacterial properties.
    Mollahosseini A; Rahimpour A
    Biofouling; 2013; 29(5):537-48. PubMed ID: 23682668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 45.