These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 21254139)

  • 41. Handheld, point-of-care laser speckle imaging.
    Farraro R; Fathi O; Choi B
    J Biomed Opt; 2016 Sep; 21(9):94001. PubMed ID: 27579578
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Photothermal laser speckle imaging.
    Regan C; Ramirez-San-Juan JC; Choi B
    Opt Lett; 2014 Sep; 39(17):5006-9. PubMed ID: 25166060
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Momentum transfer Monte Carlo for the simulation of laser speckle imaging and its application in the skin.
    Regan C; Hayakawa C; Choi B
    Biomed Opt Express; 2017 Dec; 8(12):5708-5723. PubMed ID: 29296499
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Laser Speckle Imaging to Monitor Microvascular Blood Flow: A Review.
    Vaz PG; Humeau-Heurtier A; Figueiras E; Correia C; Cardoso J
    IEEE Rev Biomed Eng; 2016; 9():106-20. PubMed ID: 26929060
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transmissive-detected laser speckle contrast imaging for blood flow monitoring in thick tissue: from Monte Carlo simulation to experimental demonstration.
    Li DY; Xia Q; Yu TT; Zhu JT; Zhu D
    Light Sci Appl; 2021 Dec; 10(1):241. PubMed ID: 34862369
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Imaging of the Finger Vein and Blood Flow for Anti-Spoofing Authentication Using a Laser and a MEMS Scanner.
    Lee J; Moon S; Lim J; Gwak MJ; Kim JG; Chung E; Lee JH
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28441728
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Methods to enhance laser speckle imaging of high-flow and low-flow vasculature.
    Choi B; Ringold TL; Kim J
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4073-6. PubMed ID: 19964103
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Efficient characterization of regional mesenteric blood flow by use of laser speckle imaging.
    Cheng H; Luo Q; Wang Z; Gong H; Chen S; Liang W; Zeng S
    Appl Opt; 2003 Oct; 42(28):5759-64. PubMed ID: 14528940
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Laser speckle imaging of flowing blood: A numerical study.
    van As K; Boterman J; Kleijn CR; Kenjeres S; Bhattacharya N
    Phys Rev E; 2019 Sep; 100(3-1):033317. PubMed ID: 31639980
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Laser speckle imaging based on photothermally driven convection.
    Regan C; Choi B
    J Biomed Opt; 2016 Feb; 21(2):26011. PubMed ID: 26927221
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Laser speckle imaging in the spatial frequency domain.
    Mazhar A; Cuccia DJ; Rice TB; Carp SA; Durkin AJ; Boas DA; Choi B; Tromberg BJ
    Biomed Opt Express; 2011 Jun; 2(6):1553-63. PubMed ID: 21698018
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Determination of Teflon thickness with laser speckle. I. Potential for burn depth diagnosis.
    Sadhwani A; Schomacker KT; Tearney GJ; Nishioka NS
    Appl Opt; 1996 Oct; 35(28):5727-35. PubMed ID: 21127582
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantitative, depth-resolved determination of particle motion using multi-exposure, spatial frequency domain laser speckle imaging.
    Rice TB; Kwan E; Hayakawa CK; Durkin AJ; Choi B; Tromberg BJ
    Biomed Opt Express; 2013; 4(12):2880-92. PubMed ID: 24409388
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Integration of image exposure time into a modified laser speckle imaging method.
    Ramírez-San-Juan JC; Huang YC; Salazar-Hermenegildo N; Ramos-García R; Muñoz-Lopez J; Choi B
    Phys Med Biol; 2010 Nov; 55(22):6857-66. PubMed ID: 21048287
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Laser speckle imaging using a consumer-grade color camera.
    Yang O; Choi B
    Opt Lett; 2012 Oct; 37(19):3957-9. PubMed ID: 23027244
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Wearable speckle plethysmography (SPG) for characterizing microvascular flow and resistance.
    Ghijsen M; Rice TB; Yang B; White SM; Tromberg BJ
    Biomed Opt Express; 2018 Aug; 9(8):3937-3952. PubMed ID: 30338166
    [TBL] [Abstract][Full Text] [Related]  

  • 57. SpeckleCam: high-resolution computational speckle contrast tomography for deep blood flow imaging.
    Maity AK; Sharma MK; Veeraraghavan A; Sabharwal A
    Biomed Opt Express; 2023 Oct; 14(10):5316-5337. PubMed ID: 37854569
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Resolution experiments using the white light speckle method.
    Conley E; Cloud G
    Appl Opt; 1991 Mar; 30(7):795-800. PubMed ID: 20582062
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Speckle contrast optical spectroscopy, a non-invasive, diffuse optical method for measuring microvascular blood flow in tissue.
    Valdes CP; Varma HM; Kristoffersen AK; Dragojevic T; Culver JP; Durduran T
    Biomed Opt Express; 2014 Aug; 5(8):2769-84. PubMed ID: 25136500
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Applications of Laser Speckle Contrast Imaging Technology in Dermatology.
    Linkous C; Pagan AD; Shope C; Andrews L; Snyder A; Ye T; Valdebran M
    JID Innov; 2023 Sep; 3(5):100187. PubMed ID: 37564105
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.