These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 21254218)

  • 1. Mining gold dust under the genome wide significance level: a two-stage approach to analysis of GWAS.
    Shi G; Boerwinkle E; Morrison AC; Gu CC; Chakravarti A; Rao DC
    Genet Epidemiol; 2011 Feb; 35(2):111-8. PubMed ID: 21254218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method combining a random forest-based technique with the modeling of linkage disequilibrium through latent variables, to run multilocus genome-wide association studies.
    Sinoquet C
    BMC Bioinformatics; 2018 Mar; 19(1):106. PubMed ID: 29587628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finding type 2 diabetes causal single nucleotide polymorphism combinations and functional modules from genome-wide association data.
    Kang C; Yu H; Yi GS
    BMC Med Inform Decis Mak; 2013; 13 Suppl 1(Suppl 1):S3. PubMed ID: 23566118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploiting Linkage Disequilibrium for Ultrahigh-Dimensional Genome-Wide Data with an Integrated Statistical Approach.
    Carlsen M; Fu G; Bushman S; Corcoran C
    Genetics; 2016 Feb; 202(2):411-26. PubMed ID: 26661113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hidden Markov random field model for genome-wide association studies.
    Li H; Wei Z; Maris J
    Biostatistics; 2010 Jan; 11(1):139-50. PubMed ID: 19822692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A modified forward multiple regression in high-density genome-wide association studies for complex traits.
    Gu X; Frankowski RF; Rosner GL; Relling M; Peng B; Amos CI
    Genet Epidemiol; 2009 Sep; 33(6):518-25. PubMed ID: 19365845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploiting genome structure in association analysis.
    Kim S; Xing EP
    J Comput Biol; 2014 Apr; 21(4):345-60. PubMed ID: 21548809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reprioritizing genetic associations in hit regions using LASSO-based resample model averaging.
    Valdar W; Sabourin J; Nobel A; Holmes CC
    Genet Epidemiol; 2012 Jul; 36(5):451-62. PubMed ID: 22549815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screen and clean: a tool for identifying interactions in genome-wide association studies.
    Wu J; Devlin B; Ringquist S; Trucco M; Roeder K
    Genet Epidemiol; 2010 Apr; 34(3):275-85. PubMed ID: 20088021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the follow-up of genome-wide association studies: an overall test for the most promising SNPs.
    Lipman PJ; Cho MH; Bakke P; Gulsvik A; Kong X; Lomas DA; Anderson W; Silverman EK; Lange C
    Genet Epidemiol; 2011 Jul; 35(5):303-9. PubMed ID: 21374717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the lasso and the elastic net in genome-wide association studies.
    Waldmann P; Mészáros G; Gredler B; Fuerst C; Sölkner J
    Front Genet; 2013; 4():270. PubMed ID: 24363662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Penalized multimarker vs. single-marker regression methods for genome-wide association studies of quantitative traits.
    Yi H; Breheny P; Imam N; Liu Y; Hoeschele I
    Genetics; 2015 Jan; 199(1):205-22. PubMed ID: 25354699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hidden Markov models for controlling false discovery rate in genome-wide association analysis.
    Wei Z
    Methods Mol Biol; 2012; 802():337-44. PubMed ID: 22130891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BGWAS: Bayesian variable selection in linear mixed models with nonlocal priors for genome-wide association studies.
    Williams J; Xu S; Ferreira MAR
    BMC Bioinformatics; 2023 May; 24(1):194. PubMed ID: 37170185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing the efficacy of SNP filtering methods for identifying a single causal SNP in a known association region.
    Spencer AV; Cox A; Walters K
    Ann Hum Genet; 2014 Jan; 78(1):50-61. PubMed ID: 24205929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide association analyses identify known and novel loci for teat number in Duroc pigs using single-locus and multi-locus models.
    Zhuang Z; Ding R; Peng L; Wu J; Ye Y; Zhou S; Wang X; Quan J; Zheng E; Cai G; Huang W; Yang J; Wu Z
    BMC Genomics; 2020 May; 21(1):344. PubMed ID: 32380955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A powerful statistical framework for generalization testing in GWAS, with application to the HCHS/SOL.
    Sofer T; Heller R; Bogomolov M; Avery CL; Graff M; North KE; Reiner AP; Thornton TA; Rice K; Benjamini Y; Laurie CC; Kerr KF
    Genet Epidemiol; 2017 Apr; 41(3):251-258. PubMed ID: 28090672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient unified model for genome-wide association studies and genomic selection.
    Li H; Su G; Jiang L; Bao Z
    Genet Sel Evol; 2017 Aug; 49(1):64. PubMed ID: 28836943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of a blockwise approach in variable selection using linkage disequilibrium information.
    Dehman A; Ambroise C; Neuvial P
    BMC Bioinformatics; 2015 May; 16():148. PubMed ID: 25951947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of gene-environment interactions in the presence of linkage disequilibrium and noise by using genetic risk scores with internal weights from elastic net regression.
    Hüls A; Ickstadt K; Schikowski T; Krämer U
    BMC Genet; 2017 Jun; 18(1):55. PubMed ID: 28606108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.