BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 21254311)

  • 1. Synthesis of peptides containing 5-hydroxytryptophan, oxindolylalanine, N-formylkynurenine and kynurenine.
    Todorovski T; Fedorova M; Hennig L; Hoffmann R
    J Pept Sci; 2011 Apr; 17(4):256-62. PubMed ID: 21254311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mass spectrometric characterization of peptides containing different oxidized tryptophan residues.
    Todorovski T; Fedorova M; Hoffmann R
    J Mass Spectrom; 2011 Oct; 46(10):1030-8. PubMed ID: 22012669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of isomeric 5-hydroxytryptophan- and oxindolylalanine-containing peptides by mass spectrometry.
    Todorovski T; Fedorova M; Hoffmann R
    J Mass Spectrom; 2012 Apr; 47(4):453-9. PubMed ID: 22689620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of tryptophan oxidation products in bovine alpha-crystallin.
    Finley EL; Dillon J; Crouch RK; Schey KL
    Protein Sci; 1998 Nov; 7(11):2391-7. PubMed ID: 9828005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative evaluation of tryptophan oxidation in actin and troponin I from skeletal muscles using a rat model of acute oxidative stress.
    Fedorova M; Todorovsky T; Kuleva N; Hoffmann R
    Proteomics; 2010 Jul; 10(14):2692-700. PubMed ID: 20455213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the degradation products of a color-changed monoclonal antibody: tryptophan-derived chromophores.
    Li Y; Polozova A; Gruia F; Feng J
    Anal Chem; 2014 Jul; 86(14):6850-7. PubMed ID: 24937252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mass spectral evidence for carbonate-anion-radical-induced posttranslational modification of tryptophan to kynurenine in human Cu, Zn superoxide dismutase.
    Zhang H; Joseph J; Crow J; Kalyanaraman B
    Free Radic Biol Med; 2004 Dec; 37(12):2018-26. PubMed ID: 15544920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated Fmoc-based solid-phase synthesis of peptide thioesters with self-purification effect and application in the construction of immobilized SH3 domains.
    Mende F; Beisswenger M; Seitz O
    J Am Chem Soc; 2010 Aug; 132(32):11110-8. PubMed ID: 20662535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Profiling of residue-level photo-oxidative damage in peptides.
    Grosvenor AJ; Morton JD; Dyer JM
    Amino Acids; 2010 Jun; 39(1):285-96. PubMed ID: 20091070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Side-chain anchoring strategy for solid-phase synthesis of peptide acids with C-terminal cysteine.
    Barany G; Han Y; Hargittai B; Liu RQ; Varkey JT
    Biopolymers; 2003; 71(6):652-66. PubMed ID: 14991675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural characterization of new microcystins containing tryptophan and oxidized tryptophan residues.
    Puddick J; Prinsep MR; Wood SA; Miles CO; Rise F; Cary SC; Hamilton DP; Wilkins AL
    Mar Drugs; 2013 Aug; 11(8):3025-45. PubMed ID: 23966035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein oxidation in plant mitochondria detected as oxidized tryptophan.
    Møller IM; Kristensen BK
    Free Radic Biol Med; 2006 Feb; 40(3):430-5. PubMed ID: 16443157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The origin and control of ex vivo oxidative peptide modifications prior to mass spectrometry analysis.
    Froelich JM; Reid GE
    Proteomics; 2008 Apr; 8(7):1334-45. PubMed ID: 18306178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective synthesis of kynurenine-containing peptides via on-resin ozonolysis of tryptophan residues: synthesis of cyclomontanin B.
    Wong CT; Lam HY; Li X
    Org Biomol Chem; 2013 Nov; 11(43):7616-20. PubMed ID: 24104948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation of Free Tryptophan and Tryptophan Residues in Peptides and Proteins.
    Simat TJ; Steinhart H
    J Agric Food Chem; 1998 Feb; 46(2):490-498. PubMed ID: 10554268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aza-amino acid scanning of secondary structure suited for solid-phase peptide synthesis with fmoc chemistry and aza-amino acids with heteroatomic side chains.
    Boeglin D; Lubell WD
    J Comb Chem; 2005; 7(6):864-78. PubMed ID: 16283795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The application of an aryl hydrazine linker prevents beta-elimination side products in the SPPS of C-terminal cysteine peptides.
    Ni S; Zhang H; Huang W; Zhou J; Qian H; Chen W
    J Pept Sci; 2010 Jun; 16(6):309-13. PubMed ID: 20474043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of cysteine, methionine and tryptophan residues of actin oxidized in vivo during oxidative stress.
    Fedorova M; Kuleva N; Hoffmann R
    J Proteome Res; 2010 Mar; 9(3):1598-609. PubMed ID: 20063901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The investigation of Fmoc-cysteine derivatives in solid phase peptide synthesis.
    McCurdy SN
    Pept Res; 1989; 2(1):147-52. PubMed ID: 2577698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Singlet-oxygen-mediated amino acid and protein oxidation: formation of tryptophan peroxides and decomposition products.
    Gracanin M; Hawkins CL; Pattison DI; Davies MJ
    Free Radic Biol Med; 2009 Jul; 47(1):92-102. PubMed ID: 19375501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.