These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 21254390)
1. Characterization of bionanocomposite scaffolds comprised of amine-functionalized single-walled carbon nanotubes crosslinked to an acellular porcine tendon. Deeken CR; Cozad MJ; Bachman SL; Ramshaw BJ; Grant SA J Biomed Mater Res A; 2011 Mar; 96(3):584-94. PubMed ID: 21254390 [TBL] [Abstract][Full Text] [Related]
2. Characterization of bionanocomposite scaffolds comprised of mercaptoethylamine-functionalized gold nanoparticles crosslinked to acellular porcine tissue. Deeken CR; Bachman SL; Ramshaw BJ; Grant SA J Mater Sci Mater Med; 2012 Feb; 23(2):537-46. PubMed ID: 22071985 [TBL] [Abstract][Full Text] [Related]
3. Characterization of bionanocomposite scaffolds comprised of amine-functionalized gold nanoparticles and silicon carbide nanowires crosslinked to an acellular porcine tendon. Deeken CR; Fox DB; Bachman SL; Ramshaw BJ; Grant SA J Biomed Mater Res B Appl Biomater; 2011 May; 97(2):334-44. PubMed ID: 21394904 [TBL] [Abstract][Full Text] [Related]
5. Aligned bioactive multi-component nanofibrous nanocomposite scaffolds for bone tissue engineering. Jose MV; Thomas V; Xu Y; Bellis S; Nyairo E; Dean D Macromol Biosci; 2010 Apr; 10(4):433-44. PubMed ID: 20112236 [TBL] [Abstract][Full Text] [Related]
6. Injectable nanocomposites of single-walled carbon nanotubes and biodegradable polymers for bone tissue engineering. Shi X; Hudson JL; Spicer PP; Tour JM; Krishnamoorti R; Mikos AG Biomacromolecules; 2006 Jul; 7(7):2237-42. PubMed ID: 16827593 [TBL] [Abstract][Full Text] [Related]
7. Comparative in vivo biocompatibility study of single- and multi-wall carbon nanotubes. Fraczek A; Menaszek E; Paluszkiewicz C; Blazewicz M Acta Biomater; 2008 Nov; 4(6):1593-602. PubMed ID: 18585111 [TBL] [Abstract][Full Text] [Related]
8. Poly(vinyl alcohol)/halloysite nanotubes bionanocomposite films: Properties and in vitro osteoblasts and fibroblasts response. Zhou WY; Guo B; Liu M; Liao R; Rabie AB; Jia D J Biomed Mater Res A; 2010 Jun; 93(4):1574-87. PubMed ID: 20014291 [TBL] [Abstract][Full Text] [Related]
9. Assessment of the biocompatibility of two novel, bionanocomposite scaffolds in a rodent model. Deeken CR; Esebua M; Bachman SL; Ramshaw BJ; Grant SA J Biomed Mater Res B Appl Biomater; 2011 Feb; 96(2):351-9. PubMed ID: 21210516 [TBL] [Abstract][Full Text] [Related]
10. Injectable in situ cross-linkable nanocomposites of biodegradable polymers and carbon nanostructures for bone tissue engineering. Sitharaman B; Shi X; Tran LA; Spicer PP; Rusakova I; Wilson LJ; Mikos AG J Biomater Sci Polym Ed; 2007; 18(6):655-71. PubMed ID: 17623549 [TBL] [Abstract][Full Text] [Related]
11. In vitro cytotoxicity of single-walled carbon nanotube/biodegradable polymer nanocomposites. Shi X; Sitharaman B; Pham QP; Spicer PP; Hudson JL; Wilson LJ; Tour JM; Raphael RM; Mikos AG J Biomed Mater Res A; 2008 Sep; 86(3):813-23. PubMed ID: 18041725 [TBL] [Abstract][Full Text] [Related]
13. Novel polypropylene biocomposites reinforced with carbon nanotubes and hydroxyapatite nanorods for bone replacements. Liao CZ; Li K; Wong HM; Tong WY; Yeung KW; Tjong SC Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1380-8. PubMed ID: 23827585 [TBL] [Abstract][Full Text] [Related]
14. Enhancing amine terminals in an amine-deprived collagen matrix. Tiong WH; Damodaran G; Naik H; Kelly JL; Pandit A Langmuir; 2008 Oct; 24(20):11752-61. PubMed ID: 18774827 [TBL] [Abstract][Full Text] [Related]
15. Differentiation of biologic scaffold materials through physicomechanical, thermal, and enzymatic degradation techniques. Deeken CR; Eliason BJ; Pichert MD; Grant SA; Frisella MM; Matthews BD Ann Surg; 2012 Mar; 255(3):595-604. PubMed ID: 22314328 [TBL] [Abstract][Full Text] [Related]
16. Preparation and mechanical properties of chitosan/carbon nanotubes composites. Wang SF; Shen L; Zhang WD; Tong YJ Biomacromolecules; 2005; 6(6):3067-72. PubMed ID: 16283728 [TBL] [Abstract][Full Text] [Related]
17. Relation of the number of cross-links and mechanical properties of multi-walled carbon nanotube films formed by a dehydration condensation reaction. Ogino S; Sato Y; Yamamoto G; Sasamori K; Kimura H; Hashida T; Motomiya K; Jeyadevan B; Tohji K J Phys Chem B; 2006 Nov; 110(46):23159-63. PubMed ID: 17107159 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of nanostructural, mechanical, and biological properties of collagen-nanotube composites. Tan W; Twomey J; Guo D; Madhavan K; Li M IEEE Trans Nanobioscience; 2010 Jun; 9(2):111-20. PubMed ID: 20215088 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of high-capacity biomolecular carriers from dispersible single-walled carbon nanotube-polymer composites. Zhang P; Henthorn DB Langmuir; 2009 Oct; 25(20):12308-14. PubMed ID: 19775136 [TBL] [Abstract][Full Text] [Related]
20. Graphene oxide/multi-walled carbon nanotubes as nanofeatured scaffolds for the assisted deposition of nanohydroxyapatite: characterization and biological evaluation. Rodrigues BV; Leite NC; Cavalcanti Bd; da Silva NS; Marciano FR; Corat EJ; Webster TJ; Lobo AO Int J Nanomedicine; 2016; 11():2569-85. PubMed ID: 27358560 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]