These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 21254786)

  • 1. Facilitated transport of 2,2',5,5'-polychlorinated biphenyl and phenanthrene by fullerene nanoparticles through sandy soil columns.
    Zhang L; Wang L; Zhang P; Kan AT; Chen W; Tomson MB
    Environ Sci Technol; 2011 Feb; 45(4):1341-8. PubMed ID: 21254786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of the preparation method and humic-acid modification on the mobility and contaminant-mobilizing capability of fullerene nanoparticles (nC60).
    Wang L; Hou L; Wang X; Chen W
    Environ Sci Process Impacts; 2014 May; 16(6):1282-9. PubMed ID: 24463710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contaminant-mobilizing capability of fullerene nanoparticles (nC60): Effect of solvent-exchange process in nC60 formation.
    Wang L; Fortner JD; Hou L; Zhang C; Kan AT; Tomson MB; Chen W
    Environ Toxicol Chem; 2013 Feb; 32(2):329-36. PubMed ID: 23172734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced transport of 2,2',5,5'-polychlorinated biphenyl by natural organic matter (NOM) and surfactant-modified fullerene nanoparticles (nC60).
    Wang L; Huang Y; Kan AT; Tomson MB; Chen W
    Environ Sci Technol; 2012 May; 46(10):5422-9. PubMed ID: 22500825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of fullerene nanoparticles (nC60) in saturated sand and sandy soil: controlling factors and modeling.
    Zhang L; Hou L; Wang L; Kan AT; Chen W; Tomson MB
    Environ Sci Technol; 2012 Jul; 46(13):7230-8. PubMed ID: 22681192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex interplay between formation routes and natural organic matter modification controls capabilities of C
    Hou L; Fortner JD; Wang X; Zhang C; Wang L; Chen W
    J Environ Sci (China); 2017 Jan; 51():315-323. PubMed ID: 28115144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport and retention of fullerene nanoparticles in natural soils.
    Wang Y; Li Y; Kim H; Walker SL; Abriola LM; Pennell KD
    J Environ Qual; 2010; 39(6):1925-33. PubMed ID: 21284289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced transport of phenanthrene and 1-naphthol by colloidal graphene oxide nanoparticles in saturated soil.
    Qi Z; Hou L; Zhu D; Ji R; Chen W
    Environ Sci Technol; 2014 Sep; 48(17):10136-44. PubMed ID: 25099876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorption of phenanthrene by dissolved organic matter and its complex with aluminum oxide nanoparticles.
    Iorio M; Pan B; Capasso R; Xing B
    Environ Pollut; 2008 Dec; 156(3):1021-9. PubMed ID: 18508167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visible light photodegradation of phenanthrene catalyzed by Fe(III)-smectite: role of soil organic matter.
    Jia H; Li L; Fan X; Liu M; Deng W; Wang C
    J Hazard Mater; 2013 Jul; 256-257():16-23. PubMed ID: 23669786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leachability and desorption of PCBs from soil and their dependency on pH and dissolved organic matter.
    Badea SL; Mustafa M; Lundstedt S; Tysklind M
    Sci Total Environ; 2014 Nov; 499():220-7. PubMed ID: 25192928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of attached phase soil and sediment organic matter physicochemical properties on fullerene (nC60) attachment.
    McNew CP; LeBoeuf EJ
    Chemosphere; 2015 Nov; 139():609-16. PubMed ID: 25600319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the transport and retention of nC60 nanoparticles in the subsurface under different release scenarios.
    Bai C; Li Y
    J Contam Hydrol; 2012 Aug; 136-137():43-55. PubMed ID: 22683828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of water solubility and mobility of phenanthrene by natural soil nanoparticles.
    Li W; Zhu X; He Y; Xing B; Xu J; Brookes PC
    Environ Pollut; 2013 May; 176():228-33. PubMed ID: 23434773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of carbon nanomaterials on the development of phenanthrene catabolism in soil.
    Oyelami AO; Semple KT
    Environ Sci Process Impacts; 2015 Jul; 17(7):1302-10. PubMed ID: 26067741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenanthrene and 2,2',5,5'-PCB sorption by several soils from methanol-water solutions: the effect of weathering and solute structure.
    Hyun S; Kim M; Baek K; Lee LS
    Chemosphere; 2010 Jan; 78(4):423-9. PubMed ID: 19917512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of nonionic surfactant Tween80 and DOM on the behaviors of desorption of phenanthrene and pyrene in soil-water systems].
    Wang GM; Sun C; Xie XQ
    Huan Jing Ke Xue; 2007 Apr; 28(4):832-7. PubMed ID: 17639946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing the desorption and biodegradation of low concentrations of phenanthrene sorbed to activated carbon, biochar and compost.
    Marchal G; Smith KE; Rein A; Winding A; Trapp S; Karlson UG
    Chemosphere; 2013 Feb; 90(6):1767-78. PubMed ID: 22921652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced binding of hydrophobic organic contaminants by microwave-assisted humification of soil organic matter.
    Hur J; Park SW; Kim MC; Kim HS
    Chemosphere; 2013 Nov; 93(11):2704-10. PubMed ID: 24050718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effects of dissolved organic matter on phenanthrene adsorption by soil].
    Xiong W; Ling WT; Gao YZ; Li QL; Dai JY
    Ying Yong Sheng Tai Xue Bao; 2007 Feb; 18(2):431-5. PubMed ID: 17450752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.