BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 21255122)

  • 41. The posttranscriptional machinery of Ustilago maydis.
    Feldbrügge M; Zarnack K; Vollmeister E; Baumann S; Koepke J; König J; Münsterkötter M; Mannhaupt G
    Fungal Genet Biol; 2008 Aug; 45 Suppl 1():S40-6. PubMed ID: 18468465
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sex in smut fungi: Structure, function and evolution of mating-type complexes.
    Bakkeren G; Kämper J; Schirawski J
    Fungal Genet Biol; 2008 Aug; 45 Suppl 1():S15-21. PubMed ID: 18501648
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Elucidation of the complete ferrichrome A biosynthetic pathway in Ustilago maydis.
    Winterberg B; Uhlmann S; Linne U; Lessing F; Marahiel MA; Eichhorn H; Kahmann R; Schirawski J
    Mol Microbiol; 2010 Mar; 75(5):1260-71. PubMed ID: 20070524
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The snf1 gene of Ustilago maydis acts as a dual regulator of cell wall degrading enzymes.
    Nadal M; Garcia-Pedrajas MD; Gold SE
    Phytopathology; 2010 Dec; 100(12):1364-72. PubMed ID: 21062173
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sphingolipid biosynthesis is required for polar growth in the dimorphic phytopathogen Ustilago maydis.
    Cánovas D; Pérez-Martín J
    Fungal Genet Biol; 2009 Feb; 46(2):190-200. PubMed ID: 19038355
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of new glycolipid biosurfactants, tri-acylated mannosylerythritol lipids, produced by Pseudozyma yeasts.
    Fukuoka T; Morita T; Konishi M; Imura T; Kitamoto D
    Biotechnol Lett; 2007 Jul; 29(7):1111-8. PubMed ID: 17417694
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Import and Export of Mannosylerythritol Lipids by Ustilago maydis.
    Becker F; Linne U; Xie X; Hemer AL; Bölker M; Freitag J; Sandrock B
    mBio; 2022 Oct; 13(5):e0212322. PubMed ID: 36069442
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Ustilago maydis Cys2His2-type zinc finger transcription factor Mzr1 regulates fungal gene expression during the biotrophic growth stage.
    Zheng Y; Kief J; Auffarth K; Farfsing JW; Mahlert M; Nieto F; Basse CW
    Mol Microbiol; 2008 Jun; 68(6):1450-70. PubMed ID: 18410495
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pathogenicity determinants in smut fungi revealed by genome comparison.
    Schirawski J; Mannhaupt G; Münch K; Brefort T; Schipper K; Doehlemann G; Di Stasio M; Rössel N; Mendoza-Mendoza A; Pester D; Müller O; Winterberg B; Meyer E; Ghareeb H; Wollenberg T; Münsterkötter M; Wong P; Walter M; Stukenbrock E; Güldener U; Kahmann R
    Science; 2010 Dec; 330(6010):1546-8. PubMed ID: 21148393
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of cis-active elements in Ustilago maydis mig2 promoters conferring high-level activity during pathogenic growth in maize.
    Farfsing JW; Auffarth K; Basse CW
    Mol Plant Microbe Interact; 2005 Jan; 18(1):75-87. PubMed ID: 15672821
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Discovery of novel cellobiose lipid gene clusters from Basidiomycetes: How chemical variation is reflected in gene cluster architecture.
    Sips LM; Lambrecht L; Van Bogaert INA
    Yeast; 2024 Jun; ():. PubMed ID: 38877753
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Complementation of Ustilago maydis MAPK mutants by a wheat leaf rust, Puccinia triticina homolog: potential for functional analyses of rust genes.
    Hu G; Kamp A; Linning R; Naik S; Bakkeren G
    Mol Plant Microbe Interact; 2007 Jun; 20(6):637-47. PubMed ID: 17555272
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cloning and heterologous expression of SS10, a subtilisin-like protease displaying antifungal activity from Trichoderma harzianum.
    Yan L; Qian Y
    FEMS Microbiol Lett; 2009 Jan; 290(1):54-61. PubMed ID: 19025577
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of the BMR1 gene encoding a transcription factor for melanin biosynthesis genes in the phytopathogenic fungus Bipolaris oryzae.
    Kihara J; Moriwaki A; Tanaka N; Tanaka C; Ueno M; Arase S
    FEMS Microbiol Lett; 2008 Apr; 281(2):221-7. PubMed ID: 18312572
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Mycocinogeny in smut yeast-like fungi of the genus Pseudozyma].
    Golubev VI
    Mikrobiologiia; 2007; 76(6):813-6. PubMed ID: 18297872
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Functional analysis of the pH responsive pathway Pal/Rim in the phytopathogenic basidiomycete Ustilago maydis.
    Cervantes-Chávez JA; Ortiz-Castellanos L; Tejeda-Sartorius M; Gold S; Ruiz-Herrera J
    Fungal Genet Biol; 2010 May; 47(5):446-57. PubMed ID: 20153837
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Efficient production of mannosylerythritol lipids with high hydrophilicity by Pseudozyma hubeiensis KM-59.
    Konishi M; Morita T; Fukuoka T; Imura T; Kakugawa K; Kitamoto D
    Appl Microbiol Biotechnol; 2008 Feb; 78(1):37-46. PubMed ID: 18071643
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Targeted transcriptomic study of the implication of central metabolic pathways in mannosylerythritol lipids biosynthesis in Pseudozyma antarctica T-34.
    Wada K; Koike H; Fujii T; Morita T
    PLoS One; 2020; 15(1):e0227295. PubMed ID: 31923270
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular and Physiological Analysis of the Powdery Mildew Antagonist Pseudozyma flocculosa and Related Fungi.
    Avis TJ; Caron SJ; Boekhout T; Hamelin RC; Bélanger RR
    Phytopathology; 2001 Mar; 91(3):249-54. PubMed ID: 18943343
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Formation of the two novel glycolipid biosurfactants, mannosylribitol lipid and mannosylarabitol lipid, by Pseudozyma parantarctica JCM 11752T.
    Morita T; Fukuoka T; Imura T; Kitamoto D
    Appl Microbiol Biotechnol; 2012 Nov; 96(4):931-8. PubMed ID: 22722912
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.