These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 21255278)
1. The outer membrane protein TolC is required for phytoalexin resistance and virulence of the fire blight pathogen Erwinia amylovora. Al-Karablieh N; Weingart H; Ullrich MS Microb Biotechnol; 2009 Jul; 2(4):465-75. PubMed ID: 21255278 [TBL] [Abstract][Full Text] [Related]
2. The phytoalexin-inducible multidrug efflux pump AcrAB contributes to virulence in the fire blight pathogen, Erwinia amylovora. Burse A; Weingart H; Ullrich MS Mol Plant Microbe Interact; 2004 Jan; 17(1):43-54. PubMed ID: 14714867 [TBL] [Abstract][Full Text] [Related]
3. Genetic exchange of multidrug efflux pumps among two enterobacterial species with distinctive ecological Niches. Al-Karablieh N; Weingart H; Ullrich MS Int J Mol Sci; 2009 Feb; 10(2):629-645. PubMed ID: 19333425 [TBL] [Abstract][Full Text] [Related]
4. Virulence Genetics of an Erwinia amylovora Putative Polysaccharide Transporter Family Member. Klee SM; Sinn JP; Christian E; Holmes AC; Zhao K; Lehman BL; Peter KA; Rosa C; McNellis TW J Bacteriol; 2020 Oct; 202(22):. PubMed ID: 32839177 [TBL] [Abstract][Full Text] [Related]
5. Formation of biphenyl and dibenzofuran phytoalexins in the transition zones of fire blight-infected stems of Malus domestica cv. 'Holsteiner Cox' and Pyrus communis cv. 'Conference'. Chizzali C; Khalil MN; Beuerle T; Schuehly W; Richter K; Flachowsky H; Peil A; Hanke MV; Liu B; Beerhues L Phytochemistry; 2012 May; 77():179-85. PubMed ID: 22377689 [TBL] [Abstract][Full Text] [Related]
6. Characterization and regulation of the resistance-nodulation-cell division-type multidrug efflux pumps MdtABC and MdtUVW from the fire blight pathogen Erwinia amylovora. Pletzer D; Weingart H BMC Microbiol; 2014 Jul; 14():185. PubMed ID: 25012600 [TBL] [Abstract][Full Text] [Related]
7. Erwinia amylovora pyrC mutant causes fire blight despite pyrimidine auxotrophy. Ramos LS; Sinn JP; Lehman BL; Pfeufer EE; Peter KA; McNellis TW Lett Appl Microbiol; 2015 Jun; 60(6):572-9. PubMed ID: 25789570 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of kasugamycin for fire blight management, effect on nontarget bacteria, and assessment of kasugamycin resistance potential in Erwinia amylovora. McGhee GC; Sundin GW Phytopathology; 2011 Feb; 101(2):192-204. PubMed ID: 20923369 [TBL] [Abstract][Full Text] [Related]
9. Characterization of AcrD, a resistance-nodulation-cell division-type multidrug efflux pump from the fire blight pathogen Erwinia amylovora. Pletzer D; Weingart H BMC Microbiol; 2014 Jan; 14():13. PubMed ID: 24443882 [TBL] [Abstract][Full Text] [Related]
10. Conservation of Erwinia amylovora pathogenicity-relevant genes among Erwinia genomes. Borruso L; Salomone-Stagni M; Polsinelli I; Schmitt AO; Benini S Arch Microbiol; 2017 Dec; 199(10):1335-1344. PubMed ID: 28695265 [TBL] [Abstract][Full Text] [Related]
11. Control of plant defense mechanisms and fire blight pathogenesis through the regulation of 6-thioguanine biosynthesis in Erwinia amylovora. Coyne S; Litomska A; Chizzali C; Khalil MN; Richter K; Beerhues L; Hertweck C Chembiochem; 2014 Feb; 15(3):373-6. PubMed ID: 24449489 [TBL] [Abstract][Full Text] [Related]
12. AraC/XylS family stress response regulators Rob, SoxS, PliA, and OpiA in the fire blight pathogen Erwinia amylovora. Pletzer D; Schweizer G; Weingart H J Bacteriol; 2014 Sep; 196(17):3098-110. PubMed ID: 24936054 [TBL] [Abstract][Full Text] [Related]
13. NorM, an Erwinia amylovora multidrug efflux pump involved in in vitro competition with other epiphytic bacteria. Burse A; Weingart H; Ullrich MS Appl Environ Microbiol; 2004 Feb; 70(2):693-703. PubMed ID: 14766544 [TBL] [Abstract][Full Text] [Related]
14. Comparative transcriptome analysis of a lowly virulent strain of Erwinia amylovora in shoots of two apple cultivars - susceptible and resistant to fire blight. Puławska J; Kałużna M; Warabieda W; Mikiciński A BMC Genomics; 2017 Nov; 18(1):868. PubMed ID: 29132313 [TBL] [Abstract][Full Text] [Related]
15. Functional characterization of the adenine transporter EaAdeP from the fire blight pathogen Erwinia amylovora and its effect on disease establishment in apples and pears. Alexander CR; Huntley RB; Schultes NP; Mourad GS FEMS Microbiol Lett; 2020 Nov; 367(20):. PubMed ID: 33152083 [TBL] [Abstract][Full Text] [Related]
16. Erwinia amylovora Auxotrophic Mutant Exometabolomics and Virulence on Apples. Klee SM; Sinn JP; Finley M; Allman EL; Smith PB; Aimufua O; Sitther V; Lehman BL; Krawczyk T; Peter KA; McNellis TW Appl Environ Microbiol; 2019 Aug; 85(15):. PubMed ID: 31152019 [TBL] [Abstract][Full Text] [Related]
17. Mutation of the Erwinia amylovora argD gene causes arginine auxotrophy, nonpathogenicity in apples, and reduced virulence in pears. Ramos LS; Lehman BL; Peter KA; McNellis TW Appl Environ Microbiol; 2014 Nov; 80(21):6739-49. PubMed ID: 25172854 [TBL] [Abstract][Full Text] [Related]
18. Genetic characterization of the HrpL regulon of the fire blight pathogen Erwinia amylovora reveals novel virulence factors. McNally RR; Toth IK; Cock PJ; Pritchard L; Hedley PE; Morris JA; Zhao Y; Sundin GW Mol Plant Pathol; 2012 Feb; 13(2):160-73. PubMed ID: 21831138 [TBL] [Abstract][Full Text] [Related]
19. Effect of a waaL mutation on lipopolysaccharide composition, oxidative stress survival, and virulence in Erwinia amylovora. Berry MC; McGhee GC; Zhao Y; Sundin GW FEMS Microbiol Lett; 2009 Feb; 291(1):80-7. PubMed ID: 19076232 [TBL] [Abstract][Full Text] [Related]
20. The Apple Fruitlet Model System for Fire Blight Disease. Klee SM; Sinn JP; McNellis TW Methods Mol Biol; 2019; 1991():187-198. PubMed ID: 31041773 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]